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The MOFFITT 'Atoms in Molecules' approach [8] and the MULLIKEI~ approximation [11] 
to two-centre integrals have been applied to M. O. Theory to give a simple equation for the 
energy of a diatomic molecule in terms of atomic spectral parameters and nuclear attraction 
integrals. 

The equation has been used to calculate the potential energy curves of 24 electronic 
states of the diatomic hydrides of second row elements and 24 states of the corresponding 
iso-electronie singly charged positive molecular ions. The agreement between the calculated 
and experimental values of the energies, the equilibrium internuclear separations, the force 
constants and the dipole moments is satisfactory. 

L'approximation de MO~FITT <<atomes en moldcules>> [8] et l'approximation de MULLIKEN 
pour les intdgrales bicentriques [11] sent utilis@es darts la m@thode des 0. M. pour obtenir une 
@quation simple pour l'@nergie d'une moldcule diatomique, contenant des termes en fonction 
de donn@es de spectroscopic atomique et des intdgrales d'attraction nucl@aire. 

Cette @quation est utilisde pour l'@valuation des eourbes d'@nergie potentielle pour 24 
@tats 61ectroniques des hydrures diatomiques des 616merits de la deuxi~me pdriode et de 24 
@tats des mono-cations mol@eulaires correspondants isodleetroniques. L'agr@ment est satisfai- 
sant entre les r 6sultats ealculds et les donn@es expdrimentales de l'@nergie, des distances inter- 
nuc]daires d'equilibre, des constantes de force et des moments dipolaires. 

Die Moffittsche l\l~herung der ,,Atome in Molekiilen" [8] und die Mullikensehe N~herung 
fiir Zweizentrenintegrale [11] wurden auf die MO-Theorie angewandt, um eine einfache Glei- 
chung fiir die Energie eines zweiatomigen ~[olekiils mit Termen aus atomaren Spektralpara- 
metern sowie Kernwechselwirkungsintegralen zu erhalten. 

Diese Gleichung wurde benutzt, um Potentialkurven fiir 24 elektronische Zustgnde zwei- 
atomarer Hydride yon Elementen der zweiten Hauptreihe zu berechnen sowie 24 Zust~nde 
der korrespondierenden isoelektronischen, positiv einfaeh geladenen Ionenmolekiile zu be- 
stimmen. Die (3bereinstimlnung zwisehen berechneten und experimentellen Werten der Ener- 
gie, der Gleiehgewichtsabst~nde, der Kraftkonstanten und der Dipolmomente ist befriedigend. 

I. Introduction 
I n  spite of the  considerable  i m p r o v e m e n t s  in high speed comput ing  techniques  

in recent  years ,  there  is st i l l  a need for calculat ions  of  molecu la r  proper t ies  b y  
semi-empir ica l  me thods  which involve  less compu ta t i ona l  effort t h a n  the  more  
r igorous approaches .  F o r  example ,  MO~FITT'S ' A t o m s  in Molecules '  me thod  [8], 
which regards  bond ing  as a p e r t u r b a t i o n  of the  a t o m s  forming the  molecule,  has  
been used ve ry  successful ly  in  modif ied forms (see PAI~I~ [13]). 

This pape r  descr ibes  an  a t t e m p t  to  s impl i fy  the  L. C. A. O. molecular  o rb i t a l  
app roach  to  bonding  b y  re la t ing  the  one-centre  in tegra ls  to  the  energies of  atomic 
orbitals, and  b y  in t roduc ing  cer ta in  app rox ima t ions  to  some of  the  more  complex  
mul t i - cen t re  integrals .  This procedure  gives  a s imple equa t ion  for the  energy of  a 
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molecule in terms of  the a tomic energy levels of  the consti tuent  a toms (or ions) 
and the coulombic interact ion between these a toms (or ions). 

The general method  is outlined for diatomie molecules, and we give the results 
of  calculations on some of  the spectroscopic states of  the diatomic hydrides of  
second row elements, and the corresponding positively charged molecular ions. 

La ter  papers will discuss the application of  the method  to polyatomic molecules. 

II. Diatomic Molecules 

1. Energy Equation 

Consider the diatomic molecule formed from atoms X and Y by  placing one 
electron from X and one electron from Y in a bonding molecular orbital of the 
form 

ft.  
(aA 4- bB)/(a2+ 52+ 2 abS) 2 (1) 

where A and B are normalised atomic orbitals (possibly hybrid) of  a toms X and 
Y respectively, and S is their overlap integral, a and b are undetermined coeffi- 
cients. 

Suppose tha t  a tom X has a set of  non-bonding atomic orbitals C~, C 2, C a . .  C z . . .  
I f  we are to relate the orbitals A, C1, C2, C a . .  C~ . .  to  the eigenfunctions of  a tom 
X, they  mus t  form an or thonormal  set. Similarly, the a tom Y is considered to 
have an or thonormal  set of  non-bonding atomic orbitals D1, D2, D a . .  D i n . .  
which are or thogonal  to atomic orbital B. The non-bonding orbitals are not  
necessarily orthogonal  to the molecular orbital, nor are any  of the Ck orbitals 
necessarily orthogonal  to any  of  the Dm orbitals. The effects of lack of  or thogonal i ty  
are considered in section I I  3 and in Appendix 4. 

If  two electrons occupy the molecular orbital, the wave function for the molecule can be 
assumed to be formed from linear combinations of determinantal functions of the form 

T = det [(aA + bB)(l)s~ (aA + bB)(2)s~ C1(3)s ~ .. C~ (i) st .. Dm (N) s~]/d. /N~. (2) 

where N is the number of electrons, d is equal to a 2 + b e + 2 abS, det signifies a determinantal 
function, and si indicates electron spin + or -~-- h/2 z. The wave function will have to be 
an eigenfunetion of the spin and angular momentum of the molecule. 

The above type of wave function gives an equation for the energy of the molecule consist- 
ing of four sets of integrals as shown in Appendix 1. 

The Hamil tonian operator  is subdivided as follows: 

H = H x  + H r  + H'  + H "  (3) 

where H x  and f l y  are the Hamil tonian  operators for the electrons in the isolated 
atoms X and Y respectively. H / is the operator  for interact ion between the ions 
X + and Y+, where X + and Y+ arc formed by  loss of  electrons from atomic orbitals 
A and B respectively, H "  is the operator for all other interactions. 

The one-centre integrals derived from H x  and H r  are identified with the 
energies of  the atomic orbitals of  a toms X and Y (Appendix 2), and approxima- 
tions similar to those devised by  iVfuLLIKEN [11] are introduced for some of  the 
two-centre integrals (Appendix 3) to  give the following equation for the energy of  
the molecule : 

E = E (X+) + E (Y+) + E,~p (X+ Y§ (4a) 

+ 2 OA E (A) + 2 eB E (B) (45) 
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+ 2 Q A [ - - ] Z y I A A  [+ E ([ AA IDmDm l--�89 IADm [ ADm ])] 
m 

+ 2 OB [--  I Zx [ BB ]+ 2 ([ BB ICe C~ 1--�89 [ BCTc [ BCk [)] (4c) 
lc 

+ 0~ I AA i AA I+ 02 [ BB i BB I (4d) 

+ 2 ~A ~B ] AA I BB] (4e) 
abS 

+ ~ -  [--  [Zx [ AA l +  @ v ([ AA 1 Ce Ck I-- �89 lACe l ACe p) 

- - I Z r i  BB I+ E ([ B B I D m D m  - - �89  [ BDm ]) 
m 

-]- eA i dA  I AA l+ OB [ BB [ BB (4f) 

+ ]Zy INN 1--72 (I An IDm IDm l--�89 IADm IA~.~ 1) 
m 

+ i 1 BB I-- Z ([ BB I I-- [ I [) 
k 

- !  I BB I] 
where 

QA : ( a 2 - t  - a b S ) / d  and OB = (b2+ abS)/d= i - -9A  " ( 5 )  

The integrals in equation (4) are of three types: 
Nuclear attraction integrals e. g. I Zy [ AA ] representing the potential energy 

of attraction of an electron in A to the nuclear charge Zy. 
Coulomb@ repulsion integrals between electrons in specified orbitals e .g .  

[ AA I AA I, ] AA I Dm Dm [. 
Exchange integrals involving specified orbitals e. g. ] ADm I ADm ], [ AC~ ] AC~ 1. 
E (X +) and E (Y+) are the energies of the isolated ions X+ and Y+ formed by 

removing electrons from orbitals A and B respectively, and Erep (X + Y+) is the 
potential energy of repulsion involved when the ions approach each other. 

E (A) and E (B) are the 'energies' of the atomic orbitals A and B respectively 
i. e. the difference in energy between X and X § and between Y and Y+. 

2. 'l)Iodel' Ior Bonding 
The energy equation (4) is mathematically equivalent to that  for the following 

hypothetical model for the formation of a single bond. 
The energy associated with the ions X + and 

Y+ at a given internuclear separation is given by 
section (4a). The formation of the bond can be 
regarded as being equivalent to placing an 
amount of charge 2 CA in atomic orbital A, and an 
amount of charge 2 0B in atomic orbital B as 
shown diagrammatically in Fig. 1. The density 
in each orbital is equally distributed between 
spin c~ and spin fi i. e. corresponds to randomised 
spin. The terms (4b) correspond to the energies 
of the charge densities 2 0A and 2 ~0B in their 
respective atomic orbitals, and section (4c) gives 
the potential energies of attraction of charge den- 

QAv ~ vpB 
s 

Fig. 1. "Model"  for Bonding 

sity 2 0A to the ion Y+ and of charge density 2 ~OB to the ion X+. 
The terms (4d) and (40) correspond to the energy of repulsion between two 
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electrons with opposed spin 'shared' between the two atomic orbitals as shown 
in Fig. 1. 

The terms (4f) can be compared to a 'bonding' or 'ant]bonding' term arising 
from the overlap S between the atomic orbitals A and B. I f  abS/d is positive 
section (4f) produces stabilisation (bonding) and if it is negative it will produce 
destabilisation (antiboncling). 

For the model to be valid ~A (and ~B) must be restricted to the range 0 to l 
and the values of a and b must correspond to this situation. 

I t  is not proposed that  the above model has any physical reality, but, if the 
approximations to molecular orbital theory are reasonable, then the model can be 
said to be approximately equivalent energetically to the molecular orbital model 
of the chemical bond. 

3. 0rthogonality Correction 

The non-bonding orbitals C~ are not necessarily orthogonal to the molecular 
orbital, the deviation from orthogonality being dependent on the overlap integral 
S r between orbitals B and C~. I f  we have a pair of electrons in C~, then the correc- 
tion term required is (see Appendix 4) 

a ~ b' S '  [I]/(a '2 + b '2 + 2 a' b' S') (6) 
with 

b'/a' = -- bS'l(b - /aS.)  (7) 

[I] is of the same form as the term in braces in section (4f) of the energy equation. 
The correction embodied in equations (6) and (7) is adequate, provided S r is 

less than 0.3 which is, fortunately, the case for all the molecules treated so far by 
this method. I f  S ~ is greater than 0.3 other correction terms must be added if 
serious errors are to be avoided. 

The correction must be applied for all orbitals Ck and Dm which are not 
orthogonal to the molecular orbital (the correction involving Dm will include the 
overlap integral for A and Din), and a correction is also required for lack of ortho- 
tonali ty between any of the Ce and any of the Dm atomic orbitals. 

4. Quadratic Character of the Energy Equation 

QA can take any value in the range 0 to 1. I f  QA = 0 (i. e. ~B = 1) or if ~A - 1 
(i. e. ~B = 0), the bonding is completely ionic, and the molecule consists of ion 
pairs X + Y- or X -  Y+ respectively. I f  ~OA = ~B = 0.5 then a = + b and the two 
electrons are equally shared between the two atoms. Other values of ~A and ~B 
correspond to various degrees of ionic and covalent character of the bond. 

However, we can evaluate the energy of the molecule, with the help of atomic 
spectral data, only for the three values of QA specified above, since it is only for 
these eases that  we can identify the atomic orbitals with those of specific atoms 
or ions. The unique determination of minimum energy with respect to ~A therefore 
requires that  equation (4) must be of the form : 

0 2 E = c O -~- C 1 ~A -~ ~2 ~A (8)  

with 

C o ~ E o 

c 1 = 4 E o .  5 - 3 E  o - E  1 (9) 
c 2 = 2 (E 1 -  2 Eo. 5 + Eo) 
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where E 0, E0. ~ and E 1 are the energies of the molecule for pA = 0, 0.5 and I respecti- 
vely. 

In  this ease, the minimum energy, E*, is given by:  

E* = % + �89 ~1 ~ (10) 
with 

Equat ion (4) is approximately quadratic in ~OA and equations (8) to (11) can 
be used to evaluate the minimum energy, and the corresponding value of ~A 
(Q*) if the following statements are true. 

Using Koopman ' s  Theorem 

E (A) = -- I P  (A); E (B) = - I P  (B) (~2) 

where I P  (A) and I P  (B) are the ionisation potentials of the specified orbitals. 
Section (4b) of the energy equation is therefore linear with respect to ~)A. (HOW- 
ever, see BI~ss and LAIDLAW [2].) 

0..25 ~ , 

Z r  

0.20 

a /s h I I  I 1v 

a l p  

I I I I I "~t 
0 0.2 O.q 0.6 0.8 LO 

~A 
Fig. 2. Plots of  abS/g and a'b 'S ' / (a '~ q- b '~ + 2a'b'S') vs. O~A. ~ abSId, -- o r thogonMi ty  term w i t h  S' = 0.3, 

[I] = 1. I S = 1.0, I I  S = 0.8, I I I  S -- 0.6, IV S =  0.4 
(The do t ted  lines are to be numbered  f rom I to IV, beginning from the bot tom)  

I t  can also be assumed tha t  section (4e) is linear, since the values of the two- 
centre integrals will not change significantly with ~A. 

Sections (4d) and (4e) will be quadratic in ~A ff we assume tha t  [12] 

I A A  I A A  I= I P  ( A ) -  EA  (A) (13) 
I BB]  B B  I = I F  ( B)  - -  E A  ( B )  

where EA (A) and EA (B) are the electron affinities of orbitals A and B respecti- 
vely. 
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I t  is shown in Fig. 2 that ,  provided S is reasonably large, abS/d tends to be 
quadrat ic  in QA, and the or thogonal i ty  correction terms tend  to be linear in QA. 
We therefore use equations (8) to (11) to calculate the energy of  the molecule and 
the electron distr ibution in the bond. 

III. Diatomic Hydrides of Second Row Elements 

1. Introduction 
We have calculated from equations (4), (9), (10) and ( l i ) ,  the potential  energy 

curves of  some spectroscopic states of  the diatomic hydrides  X H  of the second 
row elements Li to  F inclusive. Exper imenta l  da ta  on these molecules are fairly 
comprehensive, and numerous  calculations have been made on them [1]. They  
therefore provide a good test  of  the val idi ty  of  the assumptions made in the deriva- 
t ion of  equat ion (4). 

We have considered only those states of  the hydrides which can be assumed 
to  be derived mainly  from appropriate  combinat ions of  2s and 2p atomic orbitals 
of  the second row element X and the is a tomic orbital of  hydrogen.  

2. Atomic 0rbitals 

We use Slater type  orbitals 

1 

H (is) = [6~/~] ~. exp ( - 6 H r) labelled H 

1 

X (is) = [6~/,n]~.exp ( - 61r ) labelled ts  

X (2s) = [65/~r] ~ r exp ( -- 6r) labelled s 

X (2 pr = [65/z] ~ r exp ( - 6r). cos 0 labelled pr  

X (2 p7~) = [65/2 ~] ~ r exp ( - 6r) �9 sin 0 �9 exp (i mz ~b) labelled 7~ for ml = + i 

labelled ~ '  for m~ = -- I . 

The bonding atomic orbital A is assumed to be a hybr id  of  the form:  

A = (s + ~p)/(l + ~ ) ~ .  (t4) 

There are no non-bonding atomic orbitals Dm associated with the hydrogen 
atom, and the non-bonding atomic orbitals C~ are orthogonal  to A. Neglecting 
lack of  or thogonal i ty  between Slater type  is  and 2s orbitals, the possible Ck 
orbitals are the is  orbital of  X,  the orbitals ~ and ~ and the hybr id  orbital 
given b y :  

a = (2s -- po)/(t + ~2)~. (15) 

The exponent  61 for the is orbital of  X was chosen to be the Slater value, 
Z - 0.3, where Z is the nuclear charge. The value of  6 was assumed to be the same 
for 2s, 2p~ and 2p~ atomic orbitals, and was calculated from spectroscopic da ta  
(Appendix 6). The values of  6 were found to be approximate ly  equal to those 
derived f rom SLAT~'S rules [18]. The exponent  of  the hydrogen is  orbital is 
calculated f rom da ta  on the species H+, H and H- .  
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3. Electronic States 

We have considered only those states which can be expressed generally as 
follows : 

ts~. ~x (~ , ) z -a -x  (AH)2 (I6) 

where (AH) 2 signifies two electrons with opposed spin in the bonding molecular 
orbital of the form 

(aA + bH)/(a 2 + b 2 + 2 abS) ~ 

x can take the values 0, t and 2, specific states being derived from the possible 
arrangements of the non-bonding electrons in the ~, ~ and ~r atomic orbita]s as 
shown in Tab. 1. States bracketted together differ only in the arrangements of 
electron spin in the o, u and ~r atomic orbitMs. (Z - 3 - x) is the total number of 
electrons in both the ~ and ~' orbitals. 

For convenience in computation, we calculated initially the energies of mole- 
cules with randomised spin (denoted ~) for the non-bonding orbitals, e. g. for 
two electrons in 7~ and u '  orbitals we calculated the energy of the state involving 

•162 and for an electron in a a orbital and two electrons in ~ orbitals we con- 
I ~ I '  

t sidered only the state involving a ~- 7~ ~- ~ +. These are not true spin states of the 
molecule, but these were readily obtained from the randomised spin states using 
the exchange integrals for the o, ~ and ~r orbitals, e. g. the a / / a n d  1// states of 
B H  arise from one electron in a ~ orbital and one in a ~ orbital. We calculated 
the energy of the state 

Is 2 (~ $ ~ r (A t t )~ .  . 

The 3 / / s t a te  can be written as: 

~Ko,~, where Ko, is which is lower in energy than the randomised spin state by 1 
the exchange integral for a (r and a ~ orbital, obtained from atomic spectral data 
as shown in Appendix 5. 

The two states with opposed spin 

; (AR)  and i T (AH) 
are �89 Ko, higher in energy than the spin randomised state. The configuration 
interaction Ko~ between these two states gives one of the components of the a/ /  
state and the 1 / / s ta te  as shown in Fig. 3. 

The energy relationships between the 3~-, 1A, 1Z+ and randomised spin states 
of B H  derived from two electrons in ~ orbitals are shown in Fig. 4. 

Using randomised spin means that initially we needed to consider only one molecular 
state for given values of Z and x [in I s2~ ~ (~r)z-3-~ (AH)2] which simplified the program 
for the caleulations considerably. The randomised sta~es were then split into true spin com- 
ponents as exemplified by Figs. 3 and 4. 

However, we found that it was impossible, using this simple theory, to calcu- 
late the effects of the very important configuration interactions between the two 
tZ+ states of BH,  and the two 2/ / s ta tes  of CH and the two 1~+ states of NH, 
since in these eases the form of the molecular orbital is not necessarily the same 
for the two states concerned i. e. the percentages of 2s and 2p character and the 
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degrees of  ionic character  m a y  be different in the two states. The interaction be- 
tween the two states can no longer be represented simply by  an atomic exchange 
integIal. 

We should also have included contr ibutions to the  specified states f rom struc- 
tures having a single electron in the molecular orbital AH or even no electrons in 

I / 
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Fig. 3. Configuration interaction for aH and ]H states of BH 

Fig. 4. Configuration interaction for a2:-, 1A and 1X+ states of B H  

Kzz I 

AH, and considered the possibility of  the two bonding electrons occupying different 
molecular orbitals. 

The consequences of omit t ing interactions of  this t ype  are discussed later. 

4. Energy Equation for Diatomie Hydrides 
The energy equat ion for the diatomic hydrides was obtained from equat ion (4) 

by  subst i tut ing a tomic orbital H for the general a tomic orbital B, by  replacing 
Z y  b y  ZH (equal to  l), by  pu t t ing  m = 0 (no Dm orbitals), and by  t reat ing the is  
orbital of  X,  the a, ~ and ~ /orb i ta l s  as C~ orbitals. The is  and a orbitals required 
or thogonal i ty  corrections [equations (6) and (7)]. 

The energies (in eV) were computed  for QA = 0, 0.5 and l ,  for ~2/(1-5 ~2) 
equal to  0.0 to  i .0 in steps of  0.2 and for the internuclear separation R equal to 
1.0 to 5.0 a. u. in steps of  0.25 a. n. using the Atlas computer .  

a)  ea = 0 

I f  OA = 0 we have the ion X + with electronic s t ructure  Is 2 a* (7~z') z -a-x  and 
the ion H -  I s 2. The energy of this state of  X+ relative to the ground state of  a tom 
X is equal to the ionisation potential  of X plus the excitat ion (valence state) 
energy required to produce the above state of  X + f rom the ground state of  X+. 
The energy of  H -  relative to the hydrogen a tom is equal to the increase in energy 
when H -  is formed f rom the hydrogen  a tom (i. e. - 0.75 cV [4]). 

The ionisation potential of atom X was taken from MOOI~E'S compilation [10], and the 
valence state energies of X + were expressed in terms of SLATER-Co~cDO~r parameters [3], then 
as a mixture of spectroscopic states using the procedure of MOFFITT [9]. Atomic energy levels 
were taken from MOORE, the energies of any unobserved terms being obtained by linear 
extrapolation of the energy levels of corresponding isoelectronic atoms or ions. (See Rom~LIcH 
[15].) Details are given in Appendix 5. 

~+ 

.2 



A New Approach to the Molecular Orbital Theory of Bonding 317 

The energy of interaction between X+ and H -  was calculated from the appropriate nuclear 
attraction, coulomb repulsion and exchange integrals and from the orthogonality correction 
terms for the is  and a orbitals of X. There is no 'bonding term' since for OA = 0, abS/d = O. 

The  two-cen t re  coulomb and  exchange in tegra ls  for the  i s  o rb i ta l  of hydrogen  
and  e i ther  the  is ,  the  a or the  z~ o rb i t a l  of X are r a the r  difficult  to  eva lua te .  F o r t u -  
na te ly ,  the  exchange  in tegra ls  are  fa i r ly  small ,  and  i t  was found  t h a t  the  coulomb 
repuls ion in tegra ls  could be ca lcu la ted  suff iciently accura te ly  b y  the  following 
me thod .  

W e  expressed  the  nuclear  a t t r a c t i on  in tegra l  for a 2.s o rb i ta l  and  a p ro ton  a t  a 
d i s tance  R as 

s (2s). e~ /R .  (i8) 

Similar ly ,  the  a t t r a c t i on  of an  e lect ron in a I s atonfic o rb i ta l  to  a p ro ton  a t  the  
sarae distance R was taken to be 

s ( ls) .e~/R. (19) 

s (28) and s ( is)  t end  to  u n i t y  for large values  of R and  lie in the  range 0.8 to  
i .0  for mos t  of the  cases t r e a t e d  here. T h e y  are  r ead i ly  ca lcu la ted  f rom equat ions  
given b y  ROOTHAA~ [16] for two centre  nuclear  a t t r a c t i o n  integrals ,  a n d  are 
r e l a t ive ly  s imple funct ions  of the  p roduc t  of the  exponen t  of the  o rb i t a l  and  R, 
see A p p e n d i x  7. W e  assumed  t h a t  

I ]8 i s  [28 2s I = s ( i s )  s ( 2 s ) . e 2 / R .  (20) 

E q u a t i o n  (20) was t e s ted  using the  t a b u l a t e d  integrals  ofKoTANI et al. [7], and  i t  
was found  t h a t  errors  no grea ter  t h a n  0.3 eV were in t roduced  b y  neglect ing the  
exchange  in tegra ls  and  using equa t ion  (20), for the  d ia tomie  hydr ides .  

Similar  app rox ima t ions  were made  for the  in tegra ls  I I s i s  ] 2po 2p~ I, 
[ i s  i s  ]2p~ 2p~ [ a n d  I i s  i s  [2s 2pz I, and  hence the  po ten t i a l  energy  of  a t t r ac -  
t ion be tween  the  ions X + and  H -  was ca lcu la ted  a t  the  specified in te rnuc lea r  
separa t ions  solely f rom the  equat ions  of R o o t h a a n  for the  two-cent re  nuclear  
a t t r a c t i o n  integrals .  The  o r thogona l i ty  t e rms  for OA = 0 are dea l t  wi th  in sect ion 
(d). 

b) OA = 0.5 

In this case the 'atoms' in the molecule are 

x [is~ ~ (~ , ) z -~ -~  A +] and H (is +). 
signifies randomised spin, and from the model this involves 'half an electron' having 

spin c< and 'half an electron' having spin /3, the repulsion between the two half electrons 
giving energy terms / A A  ] A A  ]/4 and I H H  ] H H  ]/4. The energies of the bonding states of 
the atoms relative to the ground state atoms is therefore given by the valence state energy of 
X plus the terms I A A  [ A A  [/4 and [ H H  [ H H  [/4, calculated as shown in Appendix 5. 

The two-centre nuclear attraction and coulomb integrals for interaction between the two 
atoms were calculated using the procedure described for OA = 0. 

The leading term of the bonding energy [equation (4 f)] becomes S/2 (1 + S) for ~A = 
0.5 = ~B (i.e. a = b for a bonding molecular orbital). This term and the orthogonality correc- 
tion terms are dealt with in section (d). 

c)  qA = i 

F o r  ~A = i ,  we have  the  ion pa i r  X -  ( i s  2 a z (~zY) z - 3 - x  A ~) and  H +. 

The energies of the two isolated ions will therefore be given by the ionisation potential of 
hydrogen, the electron affinity of X (taken from. EDL~'S paper [J]), and the valence state 
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energy of X-. Spectroscopic data for X-  were obtained by linear extrapolation of the data for 
corresponding isoelectronic atoms and positive ions. 

The potential energy of attraction of a proton to the ion X- was obtained directly from 
the appropriate nuclear attraction integrals for is, ~ and g orbitals. 

The bonding and orthogonality terms are zero for 0a = I (i.e. b = 0). 

d) Bonding and Orthogonality Terms 

For ~A = 0.5 
abS/d = S/2 (l § S) .  (2i) 

The one-centre integrals in the bonding term were calculated from the energies 
of atoms and ions using the Virial Theorem (Appendix 6) and were found to be 
equal to 

- 13.6 [(Z - 2) (51 - ~3) 4- ~1 -F- ~3] ~2 - i6.67 (22) 

where ~1, (~e and ~a are the exponents of the 2s, 2p~ and 2p,  orbitals of the species 
X- ,  X and X+ respectively, and i6.67 is the value for the one-centre integrals 
involving the hydrogen is  orbital. 

The two-centre integrals in the bonding term were evaluated in the usual way. 

The form of [I] in equation (6) is the same as the corresponding te rm in braces 
in the bonding term (4 f). We therefore used the value given by equation (22) for 
a pair of electrons in the r orbital, and half this value for a single electron in the 

orbital. 

[I] for the orthogonality term of the Is ~ shell involves the potential energy of 
at traction of a is  electron to the nucleus given by:  

- 27.2 Z~ls �9 (23) 

The above terra is so much greater than all the other terms in [I] that  these were 
neglected. The whole orthogonality te rm is very small due to the small value of the 
overlap integral of the is orbital of X and the hydrogen ~s orbital at the inter- 
nuclear separation of interest. 

e) Minimisation o] Energy 

Minimum energy with respect to ~A for given values of ~ and R was obtained 
using equations (8), (9) and (10). The corresponding value of ffA (Q]) was given by 
equation (i i) .  Minimum energy, for a given value of R, with respect to ~A and 
was then calculated by plotting the minimum energies with respect to ~OA against 
~2/( i § ~2), (the fraction of 2pc character in atomic orbital A). 

This procedure gave the potential energy curves for the spin randomised states 
of the diatomic hydrides. The culves for the true spin states of these molecules 
were then derived by applying the appropriate atomic exchange integrals as 
shown in Section I I I  3. The results of the calculations are shown in Fig. 5. 

5 .  R e s u l t s  f o r  D i a t o m i e  I I y d r i d e s  

In  most  cases we compare the results obtained with experimentally observed 
quantities such as dissociation energy, force constant, dipole moment  etc. Where 
experimental data  is not available we make comparisons with calculations based 
oll conventional methods. 
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Fig. 5 gives the calculated potential energy curves for the electronic states 
considered, the curves being extrapolated by dotted lines to the dissociation 
products (Fig. 5 also includes the results of  calculations on the corresponding 
positively charged molecular ions discussed in section IV). Experimental values of  

z/ 

2 

0 

- 2  

U, H Ne+H 

-~+ 

2 

+/-+ 

{z 6 8 

_-Li, s ('2S) + H 

4z 

2 

0 

- 2  

I I I 
2 # 6' 8 

-Ne ,s*pe('S)+ H + 

I2 

I0 

8 

@ ,1~4- 

4/ 

2 

Plz 
0 

- 2 : 2 ~ , +  

B H/B2H 

I I I 
2 4 z 6 8 

BH/B  

~Be sps 

- B e  s2( tS)+H 

/2 

/0 

8: 

6 

# 

2 

0 

- 2  

-1 

'E 

(s2; 

,(~) 
_~+ 

. - "  . . . . .  ]22~:_= ~ i////j 
..--"]L%:----- ...... 

ii i I 
2 zr 6 8 

_-Wsp(3e)+H 

-B+s2(IS)+H 

-B s/(~@+H 

-B s y(*P)+H 

-B~pCP)+H 

Fig. 5 a--f .  Potential energy curves for diatomic hydrides (energy scale in eV, internuclear separation in a. u.) 

potential energy minima [5] are marked on the energy axes. Where experimental 
data are not available, the results of  HURLEY'S calculations [6] are inserted in 
brackets. The experimental value of re, which does not change significantly from 
state to state or from the neutral to the positively charged molecule, is shown by 
the line on the R axis. 
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Tab. I gives the force constants obtained from the parabola of best fit to the 
potential energy curves ([experimental values in brackets are taken from I-IEI~z- 
~E~G), the fraction of 2pc character in orbital A (i. e. 22/(I § 22)] and the charge 
density 2~A in orbital .4. Dipole moments were calculated by assuming charges 
2~A and 2~B in orbitals A and H respectively. This assumption involves IViulliken 
type approximations for the atomic dipole terms arising from the conventional 

cH/c  NN/  

18 ~ - ' "  i 18 ~,,I ~ - ' " 
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o -..'r o: ,N .................. N.'p..)+, 

- e  - 2  ( ~ ;  - 
-% 

- 2 / z  I r ~ -  I ~ I 

e d Fig. 5 
molecular orbital approach to dipole moments.  The centroids of the is, ~ and nr 
orbitals of X on the bond axis are at the nucleus of X, so tha t  for the dipole moment  
calculations we can take an effective positive charge of (x § J) at the nucleus, a 
negative charge x at  the centroid of the ar orbital and a negative charge 2CA at  the 
centroid of orbital A as shown in Fig. 6. l~egative charges are denoted by  forces 
pointing downwards and net t  positive charges by  forces pointing upwards. 

The distance of the eentroid of orbital A from the nucleus is given by the 
formula : 

Y. = J" (s § ~po)2 r cos 0 d~/(i  § 2 2) . (24) 
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Subst i tut ing Slater type  orbitals in equat ion (24) gives 
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:c z e, 2ee 
Jo'ig. 6. Effective charges in hydrides 

for the (r orbital is equal in magni tude  bu t  opposite in sign to t ha t  for orbital A. 
The calculated dipole moments  are compared with those calculated by  gAa-SIL 
[16] except for the value for F H  which is experimental.  

The values of the force constants could only be determined to an accuracy of 
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ca 0.3 • 10 -5 dynes/cm, but  the results are of the correct order of magnitude. The 
dipole moments  are in the same direction as Ransil 's values (or the experimental 
value) and, considering their sensitivity to variation in @A the agreement is quite 
good. 

Note tha t  states bracketted together in Tab. i differ only in the arrangements 
of electron spin in the ~, ~ and ~'  orbitMs. The method of calculation outlined in 
section I I I  3 relates the differences in the energies of these states solely to the 
exchange integrals for the various pairs of atomic orbitals. This procedure auto- 
matically means tha t  these states have minimum energies for the same values of 
@A, 22/(t + ~ )  and R. The experimental value of ke is the average over the states 
concerned. 

6. Dissociation Products and Configuration Interaction 
The dissociation products are taken to be the ground state of the hydrogen 

atom, and the spectral state of lowest energy which occurs in the valence state 
expression for the a tom X in the molecule. There are 3 types of valence state 
which are considered, namely, Is  2 ax (zz , )z-s-x  A T t with x = 0, t and 2. 

x = 0  

I f  A is a pure 2s orbital, the valence state is represented by  a mixture of terms 
derived from the configuration ts  2 2s 2p z-s,  and, if A is a pure 2p orbital the 
valence state is represented by  a mixture of terms derived from the configuration 
ts  2 2p z-2. I f  A is a hybrid, we have a mixture of the two sets of terms. As the 
internuclear separation increases, the fraction of 2s character of orbital A will 
tend to one, to give a dissociation product which is the lowest is  2 2s 21o z - s  te rm 
present in the valence state equation. The dissociation products are in agreement 
with those predicted by  the Wigner-Witmer rules (see HERZBERG p. 315 [5]) 
provided account is taken of the exchange integrals Ko~ or K ~ ,  which may  be 
required to obtain the valence state equations for the true spin states. 

x : 2  

In  this case, the fraction of 2s character in orbital A will decrease as R increases 
to give a dissociation product of the form is  s 2s ~ 2p z-~. 

The only spectral states present in the valence state have the form is 2 2s 2p Z-s, 

and this would be expected to be the form of the dissociation product, whereas, 
in fact, the dissociation product is of the form is  ~ 2s ~ 21o z-4. 

For example, Fig. 5 shows the Be l l  2Z+ state dissociating to Be ts ~ 2s 2p (sP), 
whereas the true product is Be is  2 2s 2 (1S). However, we have not taken into 
account, in this simple t rea tment  of the effects of configuration interaction with, 
in this case, the 2X+ state of the form is  2 a 2 (AH) ~ (i. e. having a one electron 
bond). The latter state is capable of dissociating.to the product Be is 2 2s 2 (~S). 
As the internuclear separation increases, the percentage of the lat ter  form in the 
ground state wave function would increase and simultaneously the percentage 2s 
character in the ~ orbital would increase to give Be Is 2 2s 2 (1S) and H is (~kg). The 
same considerations would apply to all the molecular states having a single elec- 
tron in the a orbital. 
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The possibility of configuration interact ion between the (r 2 and z~r 1X+ func- 
t ions of BH is part icular ly impor tan t  since it would decrease the calculated energy 
of the 1X+ ground state. The same applies to the a 2 ~ and z2 ~r 2 H functions of CH, 
and to the a 2 ~ z  r and z~ ~ 1Z~+ functions of NH. The above three pairs of  states 
also involve some of the larger differences between calculation and experiment,  
bu t  unfor tuna te ly  the consideration of this type  of  interaction was beyond  the 
scope of  the present programme.  

There is also the  difficulty presented by  the terms ~ I A A  I AA [ and 
I HH I u g l  which according to this simple theory  would be retained in the 

energy of the a toms even for R = co. This could be resolved by  allowing interac- 
t ion with the  function, involving two different molecular orbitals for the two 
bonding electrons, which would become more predominant  as R increased, and 
would eventual ly  achieve the  si tuation where one molecular orbital has ~OA ---- 1 
i. e. is involved solely with the atomic orbital A, and the  other  has QA = 0 i. e. is 
associated solely with a tomic orbital H Is. This si tuation would not  involve the 
repulsion between 'half  electrons' present in the unrefined theory.  

We also did not  allow for the possibility of orbital contract ion during bonding 
which I~UEDE~B~G [17] claims to be one of the  impor tan t  factors in bonding. 
We have in t roduced the  Virial Theorem to calculate the energies of  the isolated 
a toms (Appendix 6), and  could have extended the approach fur ther  by  allowing 
the  kinetic energies of the electrons to increase as the potential  energy decreases 
during bonding. This would automat ica l ly  involve orbital contract ion (i. e. an 
increase in the exponent  of the Slater type  orbitals) and the  Virial Theorem could 
have been imposed on the molecular calculations, ]ust as it was imposed on the 
a tomic calculations. However,  the computa t ional  effort involved in this procedure 
would have been very  considerable and orbital contract ion was neglected. 

IV. Singly Charged Molecular Ions 
We have also calculated the potential  energy curves of  the singly charged 

+ + 

molecular ions Be l l  to  NcI-I, the procedure used being exact ly the same as t ha t  for 
the neutral  molecules. 

The three values of ~A in this case correspond to the  ion (atom) pairs X~+and 
H -  ( ~  = 0) X + and H (QA ~ 0.5) X and H + (~A = t.0). The molecular ion XH can 
be represented by  the  formula 

Is2 az ( ~ , ) z - * - z  (AH)2 
and is isoeleetronie with the neutral  diatomic hydride derived f rom the element 
preceding it in the Periodic table. 

The energy of the ion X 2+ in the molecule was calculated from the second ionisation 
potential of X and from ~he atomic spectral data of X 2+ taken from MOO~E [10]. The valence 
state energies ~nd the derivation of the exponents of the orbitals of the species X 2+, X + and 
X ~re given in Appendices 5 and 6. The two centre coulombie and bonding terms were calcu- 
lated as previously described, the energies of the molecular ions were minimised with respect 
to ~ and Ze/(l + 2 2) and the resulting potentiM energy curves are shown in ]Pig. 5. The few 
experimental data are marked on the energy scale, the r, values for the molecular ions being 
approximately the same as those for the corresponding parent molecules. 

On the  whole, the agreement  with experiment  is about  the same as t ha t  for 
the  parent  molecules, and the same remarks concerning the effects of configura- 
t ion interact ion apply. 

Theoret. chim. Acta (Berl.). Vol. 3 24 
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The dissociation products are in a few cases the ion X+ and the hydrogen atom, 
but in most eases they are atom X and the ion H +. In the latter case the atom X 
has a valence state of the form 

is2 ax ( ~ ' ) z - ~ - x  A ~. 

and all the molecular states are capable of dissociating to an atom having elec- 
tronic structure 

ls~ 2s~ 2pZ-4 . 
The introduction of configuration interaction with the function corresponding 

to a single electron in the bonding orbital is therefore not necessary to explain the 
dissociation products of those states having a single a electron. 

Similarly, the energy terms i [ A A  [ A A  [ and �88 I H H  [ H H  Iwill not be present 
when the dissociation products are X and H +, but configuration interaction of the 
type considered for the neutral molecules should have been included to produce 
more suitable functions. 

An interesting point about the potential energy curves of the positive molecular 
ions is that  many of them show pronounced humps, whereas this did not occur in 
the curves for the neutral molecules. Presumably this arises because at fairly 
large values of R (say 3 to 4 a. u.) the energy required to transfer electrons from 
the atom X to the proton to form a bond is greater than the stabilisation due to 
bonding. Alternatively, if no charge transfer takes place there will be a coulombic 
repulsion between the neutral atom and the proton. For the formation of a neutral 
molecule from atoms no nett charge transfer from one atom to the other is required 
to produce bonding. 

The values of @A and ~2/(t -k ~2) corresponding to minimum energy are given 
in Tab. t. 

V. Comparison with Mulliken and Paul ing Elee t ronegatNi ty  Scales 

The deviation of the bond from pm'e covalent character can be represented by 
the variable A where: 

A = 2 ~ A - -  t. (26) 

A is equal to the excess negative 6harge in the atomic orbital A (i. e. in excess of 
one which corresponds to pure covalent character) and equal to the deficiency of 
negative charge in atomic orbital B. A can take any value in the range -- i to 
+ t, the extremes corresponding to the ion pairs X+ U- and X -  U+ respectively. 
The product of A and re will be approximately equal to the dipole moment for a 
neutral diatomic molecule. 

From equations (II) and (9) 
A = - (c~ -~- c2)/c ~ = (E o - E~)/2 (E~ -- 2 Eo. 5 § Eo). (27) 

1. Neutral molecule XY 

E0, E0. 5 and E~ correspond to the energies of the pairs X + Y - ,  X Y  and X -  Y+ 
respectively. Taking energies relative to the valence states of the atoms X and Y 
and neglecting orthogonality correction terms 

E o ~_ I P  (A) - E A  ( B ) - -  e2/g (28) 

Eo.5 = ~ I A A  I A A  ] + ~ [ B B  I B B  I -- �89 e~/B + [Ij S/2 (t + S) (29) 

E~ ~- I P  (B) -- E A  (A) -- e2/R. (30) 
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The approximation signs of equations (28), (29) and (30) arise from the assump- 
tion that  the two centre coulombic terms are equal to e2/R. The form of equation 
(29) is derived from equation (4) by substituting ~A = ~B = 0.5 by equating the 
two centre integrals to e~/R and by equating sections (4a) and (4b) to the energy 
of the valence states of X and Y. [I] represents all the integrals in the braces in 
section (4f), and I P  and E A  are the valence state ionisation potential and electron 
affinity respectively. 

Using the Pariser approximation [equation (13)] and equation (27) 

A = { [ I e  (A) + E A  (A)] - [ I P  (B) + E A  (B)]}/{] A A  [ A A  I+  I B B ] B B I  
- 2 e / R  - 4 [I] S/2 (l + S)} (31) 

zl = ()~A -- ZB)/ �89 {I A A  ] A A  I -I- I B B  I B B  I - 2 e2/R - 4 [I] S/2 (t + S)} (32) 

where ZA and ZB are the 3/[ulliken c]ectronegativities of the two orbitals involved 
in bonding. We found that  for the diatomic hydrides the last two terms in the 
denominator of equation (32) tend to be approximately equal to each other but 
opposite in sign whence A is approximately independent of R and given by: 

A ~-- (ZA -- ZB)/ I (I A A  I A A  I + I B B  I B B  I) " (33) 

I f  the repulsion between two electrons in a given orbital is approximately 
independent of the type of orbital concerned then the deviation from pure covalent 
character in a bond will be approximately proportional to the difference in the 
electronegativities of the two orbitals concerned in bonding. Certainly the values 
of l AA I AA I and I B B  I BB t do not cha, ge as rapidly from atom to atom as the 
electronegativity, but  we can not in general relate the deviation from pure covalent 
character solely to the difference in 3/[ulliken electronegativitics of the orbitals 
concerned. 

We compared the values of zl derived from equation (33) with those calculated 
from the values of .0A given in Tab. 1, and, in general, the agreement between the 
two values was rather poor, presumably because the assumptions used to derive 
equation (33) are too drastic. Namely, tha t  the two-centre integrals are not all 
equal to e~/R, and probably the most drastic approximation is the neglect of the 
orthogonality correction terms. 

The ionic-covalent resonance energy of the molecule X Y  is E* - E0. ~ which 
from equations (9) to (15) and (33), is given by:  

E *  - Eo.  5 = - (ZA - -  ZB)2/(I A A  I A A  [ + I B B  I B B  1)" (34) 

Equation (34) corresponds to the Pauling concept of electrouegativity apart from 
the presence of the variables ]AA I A A  I and [ B B [ B B  I" The reliability of 
equation (34) is subject to the same reservations as equation (33). 

2. Positive Molecular Ion XY + 

I f  XY + is derived from the species X+ and Y then, when ~OA = 0, 0.5 and i, we 
have the pairs X 2+ and Y-, X+ and Y and X and Y+ respectively whence from 
equation (4) 

E o ~- I P  (X+) -- E A  (B) -- 2 e2/R (35) 

Eo.5 ~ 1  1 A A  I A A  I + 1 ] H H  ! H H  I - �89 e2/R + [I] S/2 (J_ + S) (36) 

E 1 ~ I P  (B) -- E A  (X  +) (37) 

24* 
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where I P  ( X  +) and  E A  (X+) are the  valence s tate  ionisat ion potent ia l  and  elec- 

t ron  affinity of orbi tal  A in  the ion X +. 

Using the approximat ions  given in  section IV i 

A ~- ( Z x + -  Z , -  e~/R)/(l A A  ] A A  l +  I B B I  B B  [). (38) 

The e lectronegat ivi ty  of orbi tal  A in the ion X + will be appreciably greater 
t h a n  the e lectronegat ivi ty  in  the  atom X bu t  the effect of this is modera ted  in  
equat ion  (38) by  the  presence of the t e rm e2/R. For  this reason it is no t  surprising 
t h a t  the values Of@A for the  neut ra l  molecules X H  and for the molecular ions X H  

in Tab.  I are of a similar size. I n  other words, for values of R approximate ly  
equal  to re the greater desire of X + for electrons compared with a tom X is com- 
pensated  by  the  very strong coulombic s tabi l isat ion when electrons drift  towards 
Y to produce, in  the limit,  the ion pair X ~"+ Y-.  

The authors wish to express their graditude to friends and colleagues at the Universities 
of Leeds, Manchester and Sussex for many helpful discussions. H. D. B. J. expresses apprecia- 
tion to D. S. I. R. for their financial support. 

VI. Appendices 
A p p e n d i x  1. Integrals from M .  O. Theory 

The wave function for the diatomic molecule X Y is given by a determinental function of 
the form: 
T = det [(aA + bB)(1)sl (aA + bB)(2)s.~ Cl(3)s ~ . .  C~ (i) s~ . .  D~ (N) slvj/d . VN! �9 (39) 

In some cases a combination of determinantal functions must be used e.g. if we have two 
non-bonding electrons with opposed spin in two different orbitals say p and q, then we must 
take the two possible combinations of determinantal functions involving electrons in pa and 
qfl or pfl and qa where a and fi signify spins + �89 and - �89 This only has the effect of intro- 
ducing an extra exchange integral between orbitals p and q. We therefore consider the eigen- 
value derived from equation (39), and, if necessary, modify it for configuration interaction of 
the above type. 

The energy corresponding to equation (39) can be expressed as four sets of integrals as 
shown in equation (40). 

E = S ( a~ ~Pl + a2 b~ r + a s b r + a s b ~4) Hq)l dr/d2 
+ ~ ( b4 q)~ + a2 b2 qbl + ab~ ~)a + aba r Hqb~ d~/d 2 

+ S ( a2 b2 r + a2 b~ ~ + aab ff)l + ab~ ~P2) H(Da dr/d2 
+ ~ ( a~ b2 ~ + a2 b2 q)a + aa bqbl + ab8 r H~P4 dr/d2 

w h e r e d = a  2 +b  2 + 2 a b S  
and 

q)l = det [A(i)s 1 A(2)s., Cl(3)s a .. C~(i)s, .. D,~(N)s~v]/ V~.  
(03 = det [B(1)s 1 B(2)s 2 C1(3)s 3 .. C~(i)si .. D~(N)s~v]/V~. 
~)a = det [A(l)s 1 B(2)s 2 C1(3)s a .. C~(i)s, . . Dm(N)s~]/ ~/Ar ! 
~ l  = det [B(l)s~ A(2)s~ C~(3)s a .. C~(i)s, . .  D~(N)siv]/ VN ! 

(40a) 
(4Oh) 
(400) 
(40d) 

(41a) 
(41b) 
(41o) 
(41d) 

A p p e n d i x  2. A tomic  Orbital A p p r o x i m a t i o n  

The I-Iamiltonian H in equation (40) can be written as follows: 

H =  Hx  + Hr  + H' + H" (42) 

where Hx is the operator for electrons in orbitals A and Ce only, and Hr the operator for elec- 
trons in B and/)m only, i.e. for the isolated atoms or ions of X and Y respectively. 

H' is the operator which gives the interaction between two positive ions X + and Y+ 
formed by removal of electrons from the molecular orbital, and H" is the operator for all 
other interactions arising from the bonding between the two atoms X and Y. 
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~1 and ~ are the wave functions for the ion pairs X -  Y+ and X + Y- respectively. ~3 is the 
function for the atoms X and Y in which the electron spin is a in atomic orbital A and fl in 
atomic orbital B;  and ~4 is the same function with spin fl in atomic orbital A and spin a in 
atomic orbital B. A linear combination of ~b 3 and ~ can be said to correspond to randomised 
electron spin in orbitals A and B. 

Since H x  and H r  are the proper Hamiltonians for electrons in orbitals associated with X 
and Y respectively, then the energy terms arising from H.r and H r  in equation (40) are: 

~ E (X-) + ~ E (Y+) (43a) 

+ e~ E (X+) + q~ E (Y-) (43b) 

+ ~A ~ E (X) + ~a Qn E (Y) (43c) 

+ ~A ~ E (X) + qA ~, E (Y) (43d) 

where the first two terms are derived from the first integral, the next two terms from the second 
integral etc., and 

QA = (a ~ + abS)/(a 2 + b 2 + 2 abS) 
~ = (b 2 + abS)/(a 2 + b 2 + 2 abS) = I - ~a . (44) 

E (X-), E (Y+), E (X +) and E (Y-) are the energies of the separated ions which would be 
produced by the two bonding electrons being restricted either to orbital A or to orbital B. 
E (X) and E (Y) are the energies of the isolated atoms X and Y in appropriate valence states 

with electron spin a in atomic orbitals A and B. E ( ~  and E (~) are the energies for the same 
situation except with spin ft. 

Combination of equations (43c) and (43d) gives the energies of the isolated atoms when 
the electrons in orbitals A and B have randomised spin. 

P~ ISE~  has suggested the following approximation for the coulomb integral ] A A  1 A A  I 
[12] 

[ A A  ] A A  1 = I P  (A) - E A  (A) (45) 

where I P  (A) and E A  (A) are the valence state ionisation potential and electron affinity of 
the atomic orbital A. Using this approximation we can put 

E (X- )  = E (X+) + 2 E (A) + [ A A  [ A A  I (46) 

[E (X) + E (X)]/2 = E (Z+) + E (A) (47) 

E (A), which is approximately equal to - I P  (A), is the 'energy' of an electron having 
randomised spin in orbital A, and l A A  [ A A  I is the potential energy of repulsion between 
two electrons in orbital A. 

Substituting equations (46) and (47), and similar equations for E (Y-), E ( Y )  and E (Y) 
into the expression 43 gives the following result for the energy terms arising solely from the 
operators H x  and H r  

E ( X  +) + 2 Q ~ E ( A )  + Q ~ I A A I A A I  
+ E ( Y + )  + 2 ~ B E ( B )  + ~ [ B B I B B I .  (48) 

A p p e n d i x  3. A p p r o x i m a t i o n s  to T w o - C e n t r e  In t egra l s  

The energy terms derived from H '  correspond to the energy of repulsion between the ions 
X + and Y+ formed by loss of electrons from the molecular orbital. We denote these terms 

Ere~ (X + Y+). (49) 

The integrals derived from H "  are given in equation (50), where section (50a) is derived 
from section (40a), (50b) is derived from (40b) and (SOc) from (40c) and (40d). 

(a 4 + a 3 bS) [ - 2 ] Z r  ] A A  i + 2 Z (I A A  I D,~ Dm ] - �89 I ADm [ ADm ])]/d 2 
m 

+ ( a 2 b 2 S + a 3 b ) [ - 2 1 Z r l B A I + 2 Z ( I B A i D m D ~ [ - � 8 9  ~ (50a) 
m 

+ (b ~ + ab a S) [ - 2 1 Z X  [ B B  ] + 2 X (] B B  I C~ Ck ] - { ] BC~ I B C ,  I)]/d 2 
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+ (a 2 b 2 S + ab a) [ - 2 I Zx I A B  I + 2 X (  I A B  i C~ C~ I - �89 ] AC~ I Bc,~ I)]/d ~ (50b) 

+ 2 (a s b ~ + a 3 bS) [ -  I Z ~ I A A I  + X ({ A A  I D~ Dm I - �89 [ ADm t ADm l)]/d 2 
m 

+ 2 (a s b 2 S + ab a) [ - ]Zy ] BA I + X(] BA ] D,~ Dm ] - �89 ] BDm 1AD~ l)]/d 2 
f a  

+ 2 ( ~  b~ + ~b 3 S) [ - I Z~ I B B  I + Z ([ BB I r r I - �89 I BO~ 1 BC~ l)~/a ~ 

+ 2 (as 65 s + a 3 b) [ - I z x  f A B  I + ~ ( I  A B  I C~ C~ I - �89 ] AC~ I BC~ 1)]/# 

+ 2 as b~ i A A  I ~ B  [/~ + 2 ~ b~ I A B  I A S  I/~ ~ 

+ 2 a 3 b J A A  1AB ]/d 2 + 2 ab a ] B B  ]AB  lid 2 (50c) 

The above integrals ~re of the following types (see ~OO~AA~ [16]). Nuclear attraction inte- 
grals e.g. [Zx I BB I ~nd I Z~ l A B  I" Coulomb, exchange and hybrid integrals e.g. I AA ] B B  l, 
I A S  l A B  l, I A A  I A S  I. 

Collecting like terms in equation (50) gives equation (51). 

2a2[  - [Zr  l AM I + 27([ AA ] D~ D~ I - �89  I AD'~ I)]/d 
m 

+ 2 b~ [ - I z ~  I e B  1 + z (I BB 1 c~ c~ I - �89 s ~  i Bo~ I)]/d 

+ 2 ab E - l z ~  I S A  I + Z (1 BA I 1)~ Dm I - �89 I BDm I AD, ,  I)1/~ 
m 

+ 2 ~ b~ I ~ A  [ n B  I/d~ + ~ ~ b~ I AB I~B II~ ~ + 2 ~ b l A A  I ~ e  II~' + 2 ~ I S ~  I ~ S  l/e~ 
(5~) 

Some of the integrals in equation (5t) (particularly the hybrid exchange integrals) are 
difficult to evaluate and ~U~rK~SS~ [11] suggested the following type of approximation to 
simplify their calculation 

I x x  I z z  I = sy~ (I x x  I Y ~  I + I x x  l z z  i)/~ (52) 

where Ssz is the overlgp integral for two orbitals Y and Z. 
We make the folloMng similar approximations 

I ZyIBAI~-S([Z~[AA] +IZzlBBI)/2 
I Z x [ A B [ m S ( I Z x [  B B  I + [ Z x I A A  [)/2 

BA [DmDm !~--S(IAA ID~Dm [ + I BB  ID,,~D,~ i)/2 

AB[CeC~[~--S([  BB[C~C~] + [AA [C~C~I)/2 

A B I A B I ~ S e ( I A A  [ A A I  + I B B I B B I ) / 2  

A A I A B [ ~ - - S ( I A A I A A I  + I A A J B B I ) / 2  

B B  I BA ] ~ S  (1BB] BB  I + ] B B I A A  /)/2. 

The above approximations were tested for integrals involving Slater type is  atomic 
orbitals and Slater type 2s, 2p a and 2p. atomic orbitals using the tables of KOTA~I et M. [7]. 
Errors of less than 2~ were found for the integrals involving Is orbitals with 25 and 2p= 
orbitals. Larger errors (up to 10%) were found for integrals involving the 2pe orbital. How- 
ever, for interatomic distances of 2 to 4 a.u., the above approximations usually give errors of 
less than 0.5 eV. 

We substituted equations (53) into the expression (51) and obtained the expression (54), 
for the integrals derived from that  part of the Hamiltonian l~belled H" 
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2 e ~ [  - IZ~ . IAA ] + Z ( t A A  [DmDm [ - -  � 8 9  [ADm I)3 
m 

+ 2e~ [ -  ] Z x l B B  I + Z (  I BB]C~C~[  - �89 
k 

+ 2 ~ A e B I A A I B B ]  
abS 

+ ~ - [ - I Z x [ A A [ + X ( I A A t C ~ C ~ [ - � 8 9  

- I Z r [ B B ]  + Z ( I B B I D m D m l - � 8 9  (54) 

+ q A I A A J A A ]  + ~ e I B B I B B [  

+ IZ~.IAAI-X([AAIZ)~D,~ t-�89 
m 

+ I Zx  I B B  I - z (1 B B  I C,~ C,~ I - �89 I .BC'~ I BC',~ I) 

- l A A  I B B  1]" 

Equations (48), (49) and (54) give the total energy of the molecule [equation (4) of the main 
text]. 

A p p e n d i x  4. Orthogonality Correction 

To make any atomic orbital C~ orthogonal to the bonding molecular orbital it is necessary 
to convert C~ into a molecular orbital of the form (a' Ce + b' B) such that :  

(a" C~ + b' B) (aA + bB) dT= 0 (55) 
o r  

a'bS'  + a b ' S + b b ' = O  
o r  

b'/a" = - bS'/(b + aS) (56) 

where S '  is the overlap integral for the orbitMs B and C~. I f  S '  is zero no correction is required 
since, in this case, C1~ is orthogonal to the molecular orbital. 

The proposed 'model for bonding' of the general text  indicates that  if we have two electrons 
in the given C~ orbital then the molecular orbital (a' C~ + b' B) is equivalent to charge densi- 
ties 2 (a "2 + a' b" S')/d" and 2 (b "2 + a' b' S')/d' in orbitals C~ and B, respectively, where d' = 
a '2 + b  '2 + 2 a ' b ' S ' .  

There will be a corresponding bonding term of the form 

a' b' s '  [ ~ / a ' .  (57) 

However, if S '  is reasonably small (i.e. less than 0.3) then the 'density' in C~ tends to two, 
and that  in B resulting from the correction tends to zero, to within 2% for all values of a, b 
and S. We can therefore regard the molecule as having 2 electrons in C~, the only significant 
contribution to the energy of the molecule arising from lack of orthogonality being that  given 
by the expression (57). 

A p p e n d i x  5. Valence State Energies 

We required the energies of the following atoms or ions, in the molecule XH, relative to 
ground state atoms. 

X + ls~a~ (~,)z-3-~ H -  Is  2 

X ts2a * (x~x')z-a-~A + H Is --~ 
I 

X -  ls~a ~ (~')z-~-xA2 H + 

where + signifies 'randomised spin', which introduces the energy terms [AA I A A  ]/4 and 

] HH ] HH I/4 associated with the repulsion between two 'half electrons' in orbitals A and H 
respectively. + 

For the molecule X H  we required the energies of the following species 

X 2+ ~s2a ~ (z~') z-~-~ H -  Is 2 

X ls~a ~ (xW)z-~-xA~ H+. 
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The energies of the  species derived from atom X were calculated initially relative to the  
ground state of the ion X +. 

Ionisation potentials were taken  from M o o ~  [10] and electron affinities from ]~DLEN [4]. 
The valence s tate  energies of the  spin randomised states (section I I I  3) were calculated in 

terms of Slater-Condon parameters  [3] as shown in Tab. 2, 

Table 2. Valence State Energies in  T e r m s  o /S la ter -Condon  Parameters  

x = 0  

X + ( o r X  ~+)ls~z~ p ~ - y ( y - l )  F ~  

X (or X +) is~"zvA + c [sp~ - y G ~ / 2  - y (y - t )  ~ + (1 - c) p~+~ - (2 y~ + 5 y) F~w/2]  + 

+ I A A  I A A  I/4 

X - ( o r X )  l s2s~A ~ c[sepv - y G ~  - y ( y  - l )  F ~ ]  + ( 1  - c ) [ p ~ + ~ - ( y ~  + 6 y - 4 )  F ~ ]  + 

+ e [4 ( G ~  - Y ~ )  - Ad~ ] 

x = l  

X + ( o r X  ~+) l s 2 ~  -~ c [ p v -  (2y2 + y - 3 )  F ~ / 2 ]  + ( 1  - c ) [ s p  ~ - ~ - ( y - ~ ) G ~ j 2 -  

- -  ( y e  - 3 y + 2 )  F 2 ~ ]  

X (or X +) ~s2crz'~-~A + spy - yGz~/2  - (2 y2 + y - 3) F ~ / 2  - e [ 2 ( G ~  - F2~)  - A0~/2 ] + 

+ I A A  ] A A  I/4 

X -  (or X )  t s ~ z ~ - ~ A  ~ e [s~p y - yG~v - (2 y~ + y - 3) F ~ / 2 ]  + (t  - e) [sp~ +~ - 

- - ( y  + 1 ) G ~ / 2  - (y~ + ~t y - 9) F ~ ]  

x = 2  

X +  ( o r  X ~+) l s ~ a 2 z ~  - 2  e [p'J - ( y 2  + 2 y - 1 2 )  F 2 ; , ,  ] + (~ - c )  [ s  2 p '~-~  - ( y  - 2 )  d~,~, - ( y2  _ 

- -  5 y + 6) F~2p ] + e [4 (Gv~ - F s  - Ad~  

X ( o r X  +) ~s~cr2z~-2A + e [ s p ~ - y G ~ v / 2  - (y2 + 2 y - 12) F , ~ ]  + (1 -- c) [ s~py- l - - (y- - l )  G~p 

- (2U s - 3 y - 2 )  F2~/2  ] + I A A I A A ] / 4  

X -  (or X) l s ~ z ~ - ~ A  ~ s~p~ - y G ~  - (y~ + 2 y - 12) F ~  

y = Z - 3 - x for the molecules X H  + 

y = Z - 4 - x for the molecular ions X H .  

zv etc. signifies the  to ta l  number  of electrons in bo th  the ~ and ~'  orbitals. 

e = ~.l('l. + ).~) e -- ~1(~, + ~ ) ~  

s2py = 2 I~ + y l p  + Fo~ + 2 y F j ~  + y (y - ~) FoCal2 

pu = Y U  + Y (y - ~) FoV~/2 

Ao~ = Fo~ - 2 F d ~  + Fo~P 

s and io denote 2s and 2p atomic orbitals. 

The Slater-Condon parameters  c~n be calculated from the atomic energy levels of the  
atoms and ions involved, bu t  this procedure does not  always give consistent values for GI~p 
and  F2~  i.e. the  value of Fe~p, say, calculated from one pair of states differs from the value 
obtained from ~nother pair. For this reason we trausformed the  valence state expressions of 
Tab. 2 into mixtures of spectroscopic terms, and  evaluated the  valence state energies by  
inserting the values of the appropriate atomic energy levels. This is the procedure developed 
by  Mo~'FI~'T [9], and  may be i l lustrated for the  case of the  B H  molecule. 

For  x = 0; the randomised spin s tate  of B H  is 
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For @~ = 0, 0.5 and t the valence state energies of the B+, B and B -  species are respectively: 

t 

B c [�89 2s2p ~ (~P) + ~ 2s2p e (:D) + �89 2s2p ~ (:S) + 1 2s2pe (:p)] 

+ (1 - c) [�89 2p a (~S) + ~-2p a (aD) + 1 2pa (2p)] + [ A A  I A A  l/4 

t 
B -  c [-~ 2s22p 2 (3p) + ~ 2s22p2 (1D) + 1 2s22p2 (1S) ] + 

I 
+ (l - c) [~ 2p~ (ap) + ~ 2p~ (1D) + �89 2p~ (lS)] + e [4 (G~ - ~a~) - ~0~3. 

The terms in square brackets are the same as those given by MO~FITT for valence states 
derived for pure atomic orbitals. Combination of the two sets of states corresponds to the use 
of a hybrid orbital in the bonding molecular orbital. The extra term e [4 (GI~ - F2~p ) - A0"~ ] 
arises from the repulsion of two electrons in a hybrid orbital in the B -  ion. 

I f  Slater-Condon parameters for the spectral states are introduced into the above equa- 
tion, the first three expressions of Tab. 2 are obtained with y = 2. 

The randomised spin state can be converted into true spin states of the molecule B H  as 
shown in :Fig. 4 of section I I I  3. These are the a / : -  the 1A and the ~Z+ states, produced by 
introducing the exchange integral K , which changes the 'weights' of the spectral terms in 
the valence state e.g. the spectral state of B+ required for the a/ : -  is only the ap term, that  
required for the 1A is only the 1D term, and for the 1/:+ state the valence state of B + is 
[w (1S) + �89 QD)]. Similar considerations apply to the application of K n ,  to the B atom and 
the B -  ion. 

The spin randomised case for x = l is 

and this gives rise to the 3 / / a n d  1 / / s ta tes  for B H  by the use of the exchange integral K ~  
(or K,~,). The appropriate valence state energies are given by: 

B+ c [-~ 2p e (ap) + _~ ,2p2 (~D)] + (i - c) [~ 2s2p (ap) + ~ 2s2p (~P)] 

B [�89 2s2p 2 ('P) + ~ 2s2p z (aD) + ~ 2s2p ~ (~P)] - e [2 (G~v - Fe~v ) -- Ao2~/2] + ]AA [AA 1/4 

B -  c [~ 2s22p 2 (ap) + ~ 2se2pe(1D)] + (l - c) [8 2s2p3 (aD) + ~ 2s2pa (ap) + 
+ 1 2s2pa (1D) + �89 2s2pa Qp)] .  

Application of Ko~ results in only the ap term of B § being associated with the a / / s t a t e  
and only the 1D and xp terms of B+ being associated with the 1/ /s ta te .  Similar effects occur 
for the B atom and the B -  ion. 

The extra terms involving (G~'v --/~avp), A0~v and I A A  ] A A  I/4 were calculated from the 
monocentric integrals of ROOTHAA,W [16]. 

G~v = 2.1842 ~ eV (57) 

F~p~ = 0.1912 d eV (58) 

Ao~v = O 

where ~ is the Slater orbital exponent of the 2s and 2p orbitals. 

I H H  ] H H  I = t7.00 6H eV (59) 

where 6H is the orbital exponent for the hydrogen is  orbital. 

I A A  I A A  I = (Fo~' + 2 ~.~ Fdv + ~' Fovv + 4 ~? Gx~v + 4 2 a Favp)/(l + 22)~ (60) 
where 

Fo~ = Fo~p = Fov~ = 9.8818 ~ eV.  (61) 
Exchange integrals 

K,~ = a~,, . 22/(1 + )~2) + 3 Fzvv/(i + 2, z) (62) 

Kz~, = 6 Fa~  (63) 
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and they were calculated from differences in the atomic energy levels used in the valence 
state expressions. 

Atomic energy levels for atoms and positive ions were taken from MooRE [10], and for the 
negative ions they were obtained by linear extrapolation of the energy levels of the corres- 
ponding isoelectronic atoms or ions (see I~OItRLICtI [15]). 

Appendix  6. Application o / the  Vi*.'ial Theorem 

The orbital exponent 6 of the atom X was found from the energy of the atom, in its appro- 
priate valence state, relative to the positive ion X(z-2~ § Is 2. 

Let I be the sum of the ionisation potentials required to produce XIz-2)+ 182 from the 
ground state of atom X, and V the valence state of energy of X expressed as a mixture of 
spectroscopic terms, ignoring for the moment the terms involving (GI~--F2~ ) and ] AA IAA [/4. 
I f  6 / is the exponent of the 2s and 2p orbitals then the kinetic energy of the electrons in these 
orbitals will be 13.6 (Z - 2) 6 ,2 and by the Virial Theorem 

t3.6 (Z - 2) 6 '2 = I - V.  (64) 

The potential energy required to remove these electrons will be 27.2 (Z - 2) 6 '2. 
The extra potential energy terms involving (GI~p--F~) and I AAIAA ]/4 will cause 6' 

to change to 6, the exponent of the Slater type orbitals of the atom in the molecule. 
I f  we regard the energy of the Is: as dependent only on the nuclear charge i.e. independent 

of the number of 2s and 2p electrons, the potential energy terms involving 2s and 2p orbitals 
can be shown to be proportional to 6 [see equations (57) to (61) for example], so tha t  the change 
from 6' to 6 will cause the first potential energy term to change to 27.2 (Z - 2) 6' 6. I f  we 
express the extra potential energy terms as K 6, then the new total potential energy will, by 
the Virial Theorem, be given by: 

27.2 (Z - 2) 62 = 27.2 (Z - 2) 6 '6 -- K 6 .  (65) 
From equation (64) 

1 
6 = [(I - V)/13.6 (Z - 2)]~ -- K/27.2 (Z - 2) (66) 

and the energy of the atom in the molecule relative to the ground state atom is 

[ - t3.6 (Z - 2) 62 . (67) 

The values of 6 calculated from equation (66) are in fairly good agreement with those calcu- 
lated from Slater screening constants except for some of the valence states of Li and Be. 
However, in contrast with Slater's values, we allow 6 to vary with the percentage 2s and 2p 
character in the atom. 

The values of 6 and the energies for the ions X -  and X+ and for the species X 2+, X + and X, 
+ 

appropriate for the molecule XH, were calculated in a similar way (see Tab. 3). 
We also allow the exponent of the hydrogen Is atomic orbital 6H, tO vary with OA. No 

value of 6H is of course required for H +. For the hydrogen atom in the molecule, the potential 
energy of attraction to the nucleus is 27.2 6~, and the term [ HH I HH [/4 is 4.25 6~ [equation 
(59)]. From the Virial Theorem, the potential energy must be 27.2 6H 2 whence 

27.2 6H 2 = 27.2 6~ -- 4.25 6H 

i.e. 6t~ = 0.8437 (68) 

and the energy of the hydrogen atom in the molecule relative to the ground state atom is 

13.6 - ~13.6 6H 2 = 3.92 eV.  (69) 

I f  ~A = 0, then we trove the ion H -  in the molecule. The energy of the two electrons is: 

2 • :13.6 6H 2 = :13.60 + 0.75 

i.e. 6H = 0.7263 . (70) 

The monoeentric integrals of equation (4f) were expressed in terms of atomic energies via 
the Virial Theorem. The C~ atomic orbitals consist of the i s  orbital of X and the a, ~ and ~' 
orbitals. The potential energy of attraction of one electron in A to the nucleus of X ( [ Zx ] A A [) 
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~ M M ~ M ~ M d N ~ N M M ~  

.= % ~  + 

is a linear function of 6 and so are the  cou- 
lomb and  exchange integrals between A and 
the a or ~r or s '  orbitals. I f  we regard the Is  2 
shell as just  screening the nucleus then  the 
coulomb and exchange integral  involving A 
and  the l s  orbitals will also be directly pro- 
portional to the  exponent  of orbital  A. 

We therefore pu t  

KI ~ = - I Z x  I A A  I + 2: (I A A  [ C~ C~ I - 
k 

-- �89 [ AC,~] AC~I) .  (71) 

Similarly from equations (60) and  (61) 

K 2 6 = [ A A  I A A  ]. (72) 

All other coulomb and exchange integrals 
involving ~, 7~ and  ~ '  orbi~als will a]so be pro- 
portional to (~, and  we set these potent ia l  
energy terms equal to K 3 6. 

The differences in the  potent ia l  energies 
of the ions X -  and  X(z-2) + and the  ions X + 
and X(z-2~ + are respectively: 

- 27.2 (Z - 1)612 

= 2 K  l~z + K 2 ( ~ l +  K s $ 1 ;  (73) 

-- 27.2 (Z - 3)632 = Ks ~$3 (74) 

where 61 and Sa are the  exponents  of the  2s 
and  2p orbitals in the  ions X -  and X + respec- 
tively. 

The potent ial  energy t e rm required is : 

K1 (~2 + 1 K2 &2 (75) 

where 62 is the  exponent  of the orbitals in 
the  neutra l  a tom X and  from equations (73) 
and (74). 

K1 (~2 + { K2 ~2 = - 13.60 [(Z - 2) ($x -~a) 
+ 6t + 6s] 62 �9 (76) 

The monocentric integrals involving B 
and D,~ reduce to:  

-[Z,[HH I + �89 I H H  [ H I t  [ = (77) 

- -  19.76 (~H eV 

for the  diatomie hydrides, where ~H is the ex- 
ponent  of ~he hydrogen ~ s orbi tal  in the  mo- 
lecule (for ~A = 0.5 (~g = 0.8437). 

The bonding term in the  molecular ion 
X H  ~ was calculated in a similar way. 

A p p e n d i x  7. T w o - C e n t r e  In tegra l s  [16] 

a) Nuclear Attraction Integrals 
The nuclear a t t rac t ion integral  for an elec- 

t ron in a given orbital  to a proton at  a distance 
R from the  centroid of the  orbi tal  was given 
by:  

s.e2/R (78) 
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where 

s ( l s ) =  l -  [~ + b R J e x p ( - 2 6 R )  

s (28) = I - [~ + 3 6R/2 + (6R) 2 + (6B)~/3] exp ( - 2 (~/~) 

s (2p~) = ~ + 3/(~R) ~ - [7 + 1t 6R/2 + 3 (~R) ~ + (6R) ~ 
+ 3/(~R) e + 6/(6R)] exp ( - 2 6R) 

s (2pn) = I - 3/2(6R) ~ + [2 + 3/2(~R) ~ + 3/(~R + 6B/2] exp ( - 2 ~R) 

(79) 

(so) 

(s~) 
(82) 

s (282p~) = 5/(3.4642 6R) [1 - (1 + 26R  + 2 (~R) ~ + ~.2 (~R) a + 0.4 (($R) a ] exp ( - 2~R)(83)  

is the  orbital  exponent,  R the  internuclear  separation. For the hybr id  atomic orbitals A 
a n d  a 

1 22 2 ,~ 
s (A) = ~ + ~2 s (28) + I + ~,~ s(2p~) + ~ - ~ -  s (28 2p~) (84) 

)2 2 ). 
s (a) = s (2p~) + - -  s (28) s (28 2p~) (85) 

b) Overlap Integrals 
These integrals were taken  direct from ROOTHAAN'S paper  [16]. 
The overlap integral  between the  orbitals A and H is given by:  

s = V I - Z ~ -  $1~2~ + ~ ~2p~ (86) 

and t ha t  between a and H is given by 

where $1~2~ and $1~2~ are the  overlap integrals for the hydrogen i s  orbital  and the 2s and 2po 
orbitals respectively of X. 
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