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The MorrrrT ‘Atoms in Molecules” approach [8] and the MULLIKEN approximation [17]
to two-centre integrals have been applied to M. O. Theory to give a simple equation for the
energy of a diatomic molecule in terms of atomic spectral parameters and nuclear attraction
integrals.

The equation has been used to calculate the potential energy curves of 24 electronic
states of the diatomic hydrides of second row elements and 24 states of the corresponding
iso-electronic singly charged positive molecular ions. The agreement between the calculated
and experimental values of the energies, the equilibrium internuclear separations, the force
constants and the dipole moments is satisfactory.

L’approximation de MOFFITT «atomes en molécules» [8] et Papproximation de MuLLIREN
pour les intégrales bicentriques [17] sont utilisées dans la méthode des O. M. pour obtenir une
équation simple pour I'énergie d’une molécule diatomique, contenant des termes en fonction
de données de spectroscopie atomique et des intégrales d’attraction nucléaire.

Cette équation est utilisée pour 1’évaluation des courbes d’énergie potentielle pour 24
états électroniques des hydrures diatomiques des éléments de la deuxiéme période et de 24
états des mono-cations moléculaires correspondants isoélectroniques. L’agrément est satisfai-
sant entre les résultats calculés et les données expérimentales de I'énergie, des distances inter-
nucléaires d’equilibre, des constantes de force et des moments dipolaires.

Die Moffittsche Naherung der ,,Atome in Molekillen* [§] und die Mullikensche Niherung
fiir Zweizentrenintegrale [17] wurden auf die MO-Theorie angewandt, um eine einfache Glei-
chung fiir die Energie eines zweiatomigen Molekiils mit Termen aus atomaren Spektralpara-
metern sowie Kernwechselwirkungsintegralen zu erhalten.

Diese Gleichung wurde benutzt, um Potentialkurven fiir 24 elektronische Zustinde zwei-
atomarer Hydride von Elementen der zweiten Hauptreihe zu berechnen sowie 24 Zustinde
der korrespondierenden isoelektronischen, positiv einfach geladenen Ionenmolekille zu be-
stimmen. Die Ubereinstimmung zwischen berechneten und experimentellen Werten der Ener-
gie, der Gleichgewichtsabsténde, der Kraftkonstanten und der Dipolmomente ist befriedigend.

L. Introduction

In spite of the considerable improvements in high speed computing techniques
in recent years, there is still a need for calculations of molecular properties by
semi-empirical methods which involve less computational effort than the more
rigorous approaches. For example, MorrITT’s ‘Atoms in Molecules’ method [8],
which regards bonding as a perturbation of the atoms forming the molecule, has
been used very successfully in modified forms (see Parr [13]).

This paper describes an attempt to simplify the L. C. A. O. molecular orbital
approach to bonding by relating the one-centre integrals to the energies of atomic
orbitals, and by introducing certain approximations to some of the more complex
multi-centre integrals. This procedure gives a simple equation for the energy of a
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molecule in terms of the atomic energy levels of the constituent atoms (or ions)
and the coulombic interaction between these atoms (or ions).

The general method is outlined for diatomic molecules, and we give the results
of calculations on some of the spectroscopic states of the diatomic hydrides of
second row elements, and the corresponding positively charged molecular ions.

Later papers will discuss the application of the method to polyatomic molecules.

I1. Diatomic Molecules

1. Energy Equation
Consider the diatomic molecule formed from atoms X and Y by placing one
electron from X and one electron from Y in a bonding molecular orbital of the
form

(@A 4 bB)/(@+ B+ 2 abS)* (1)
where 4 and B are normalised atomic orbitals (possibly hybrid) of atoms X and
Y respectively, and § is their overlap integral. @ and & are undetermined coeffi-
cients.

Suppose that atom X has a set of non-bonding atomic orbitals 0;,C,, C, .. Cf . ..
If we are to relate the orbitals 4, C;, C,, U5 .. Cf .. to the eigenfunctions of atom
X, they must form an orthonormal set. Similarly, the atom Y is considered to
have an orthonormal set of non-bonding atomic orbitals Dy, Dy, Dy .. Dy, ..
which are orthogonal to atomic orbital B. The non-bonding orbitals are not
necessarily orthogonal to the molecular orbital, nor are any of the O orbitals
necessarily orthogonal to any of the Dy, orbitals. The effects of lack of orthogonality
are considered in section 1I 3 and in Appendix 4.

If two electrons occupy the molecular orbital, the wave function for the molecule can be
assumed to be formed from linear combinations of determinantal functions of the form

W = det[(ad + bB)(1)s, (ad +bB)2)s, Cy(3)ss .. Cu(i) s .. Dp (N)swljd. VN1 (2)
where N is the number of electrons, d is equal to a? + b2 + 2 abS, det signifies a determinantal
function, and s; indicates electron spin + or —% - %/2 7. The wave function will have to be
an eigenfunction of the spin and angular momentum of the molecule.

The above type of wave function gives an equation for the energy of the molecule consist-
ing of four sets of integrals as shown in Appendix 1.

The Hamiltonian operator is subdivided as follows:
H=Hx+ Hy+ H' 4 H" 3)

where Hy and Hy are the Hamiltonian operators for the electrons in the isolated
atoms X and Y respectively. H' is the operator for interaction between the ions
X+ and Y+, where X+ and Y+ are formed by loss of electrons from atomic orbitals
A and B respectively, H' is the operator for all other interactions.

The one-centre integrals derived from Hy and Hy are identified with the
energies of the atomic orbitals of atoms X and Y (Appendix 2), and approxima-
tions similar to those devised by MurLLIKEN [17] are introduced for some of the
two-centre integrals (Appendix 3) to give the following equation for the energy of
the molecule:

B=H XY+ E(Y*)+ Epop (XT YY) (4a)
+ 204 B (A)+ 205 B (B) (4b)
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+ 2040 Zy | 44 [+ X (| 44| Dy Dy | — 3| AD | ADp )]

| 4
+293[—\ZX}BB}+;([BB|01¢019]—%IBOk[BOkD] (40)
+ 0| AA| 44 |+ ¢4 | BB| BB (4d)
+ 20408 | AA | BB| (4e)

b .
+%[—[ZX}AA]+};(\AA[C’,¢O;C|—%[AC,C[AO;C )
— {2y | BB|+ X (| BB| Dy D |—3% | BDn | BDn )
+oa4|AA| AA |4 o5 | BB| BB | (4f)
+ |2y | 44| — 3 (| A4 | Dy | D |— | ADm | ADni |
— | 44| BB|]
where
pa= (@ abS)/d and op= (b*+ abS)/d=1—p4 . (5)

The integrals in equation (4) are of three types:

Nuclear attraction integrals e. g. | Zy | AA | representing the potential energy
of attraction of an electron in 4 to the nuclear charge Zy.

Coulombic repulsion integrals between electrons in specified orbitals e. g.
| AA | A4 |, | AA | Dy, Dy |.

Exchange integrals involving specified orbitalse. g. | ADp, | ADy, |, | ACx | ACk|.

E (X+) and E (Y*) are the energies of the isolated ions X+ and Y+ formed by
removing electrons from. orbitals 4 and B respectively, and Ey.p (X* Y7) is the
potential energy of repulsion involved when the ions approach each other.

E (4) and E (B) are the ‘energies’ of the atomic orbitals 4 and B respectively
i. e. the difference in energy between X and X+ and between Y and Y+

2. ‘Model’ for Bonding

The energy equation (4) is mathematically equivalent to that for the following
hypothetical model for the formation of a single bond.

The energy associated with the jons X+ and

. . L o4 Or

Y+ at a given internuclear separation is given by
section (4a). The formation of the bond can be
regarded as being equivalent to placing an
amount of charge 2 ¢4 in atomic orbital A, and an
amount of charge 2 gp in afomic orbital B as
shown diagrammatically in Fig. 1. The density
in each orbital is equally distributed between 04 o8
spin o and spin f i. e. corresponds to randomised
spin. The terms (4b) correspond to the energies
of the charge densities 2 p4 and 2pp in their
respective atomic orbitals, and section (4c) gives S
the potential energies of attraction of charge den- Fig. 1. “Model” for Bonding
sity 2 o4 to the ion Y+ and of charge density 2 g5 to the ion X

The terms (4d) and (4e) correspond to the energy of repulsion between two
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electrons with opposed spin ‘shared’ between the two atomic orbitals as shown
in Fig. 1.

The terms (4f) can be compared to a ‘bonding’ or ‘antibonding’ term arising
from the overlap § between the atomic orbitals 4 and B. If abS/d is positive
section (4f) produces stabilisation (bonding) and if it is negative it will produce
destabilisation (antibonding).

For the model to be valid p4 (and pg) must be restricted to the range 0 to 1
and the values of a and b must correspond to this situation.

It is not proposed that the above model has any physical reality, but, if the
approximations to molecular orbital theory are reasonable, then the model can be
said to be approximately equivalent energetically to the molecular orbital model
of the chemical bond.

3. Orthogonality Correetion

The non-bonding orbitals Cy are not necessarily orthogonal to the molecular
orbital, the deviation from orthogonality being dependent on the overlap integral
8’ between orbitals B and Cj. If we have a pair of electrons in Oy, then the correc-
tion term required is (see Appendix 4)

o b S [I)f(@®+b*+-2a' b 8 (6)

with
Vo' = — bS’|(b + al) (")
[1] is of the same form as the term in braces in section (4f) of the energy equation.

The correction embodied in equations (6) and (7) is adequate, provided 8’ is
less than 0.3 which is, fortunately, the case for all the molecules treated so far by
this method. If §’ is greater than 0.3 other correction terms must be added if
serious errors are to be avoided.

The correction must be applied for all orbitals ) and D, which are not
orthogonal to the molecular orbital (the correction involving D, will include the
overlap integral for 4 and Dy,), and a correction is also required for lack of ortho-
gonality between any of the Cy and any of the D,, atomic orbitals.

4. Quadratic Character of the Energy Equation

pa can take any value in the range O to 1. If py = 0 (i.e. pp = 1) or if pa = 1
(i. e. pp == 0), the bonding is completely ionic, and the molecule consists of ion
pairs X+ ¥~ or X~ Y+ respectively. If g4 = pg = 0.5 then ¢ = + & and the two
electrons are equally shared between the two atoms. Other values of g4 and gp
correspond to various degrees of ionic and covalent character of the bond.

However, we can evaluate the energy of the molecule, with the help of atomic
spectral data, only for the three values of p4 specified above, since it is only for
these cases that we can identify the atomic orbitals with those of specific atoms
or ions. The unique determination of minimum energy with respect to g 4 therefore
requires that equation (4) must be of the form:

E=Co+°19A+GzQ,24 (8)
with
¢o = K,
6,=4Hy;—3E,— E, 9)

¢y =2 (8 — 2 Ey; + By
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where B, B, ; and E, are the energies of the molecule for g4 = 0, 0.5 and 1 respecti-
vely.
In this case, the minimum energy, £%*, is given by:
E* =cy+ % ¢ 0% (10)
with
0h =620, (11)
Equation (4) is approximately quadratic in g4 and equations (8) to (11) can
be used to evaluate the minimum energy, and the corresponding value of g4
(o) if the following statements are true.
Using Koopman’s Theorem
E(4)=— 1P (4); E(B)=-—IP(B) (12)
where IP (A) and IP (B) are the ionisation potentials of the specified orbitals.

Section (4b) of the energy equation is therefore linear with respect to g4. (How-
ever, see BIrss and Larpraw [2].)
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Yig. 2. Plots of ¢bS[d and a'6'S'/(¢'® + b2 + 2a'b'S") vs. 4. —— abS/d, ——— orthogonality term with S = 0.3,
M=1I8=10,118=081II118=06,1IVS=04
(The dotted lines are to be numbered from I to IV, beginning from the bottom)

It can also be assumed that section (4c¢) i linear, since the values of the two-
centre integrals will not change significantly with 4.
Sections (4d) and (4e) will be quadratic in g4 if we assume that [12]
|AA| AA | = IP (4)— EA (4) (13)
| BB| BB |=IP (B)— EA (B)
where BEA (A) and EA4 (B) are the electron affinities of orbitals 4 and B respecti-
vely.
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It is shown in Fig. 2 that, provided § is reasonably large, abS/d tends to be
quadratic in g4, and the orthogonality correction terms tend to be linear in p 4.
We therefore use equations (8) to (11) to calculate the energy of the molecule and
the electron distribution in the bond.

II1. Diatomie Hydrides of Second Row Elements

1. Introduetion

We have calculated from equations (4), (9), (10) and (11), the potential energy
curves of some spectroscopic states of the diatomic hydrides XH of the second
row elements i to ¥ inclusive. Experimental data on these molecules are fairly
comprehensive, and numerous calculations have been made on them [I]. They
therefore provide a good test of the validity of the assumptions made in the deriva-
tion of equation (4).

We have considered only those states of the hydrides which can be assumed
to be derived mainly from appropriate combinations of 2s and 2p atomic orbitals
of the second row element X and the 1s atomic orbital of hydrogen.

2. Atomic Orbitais
We use Slater type orbitals

H (1s) = [633/71]%~exp (—0dmr) labelled H

1
2

X (1s) = [6}[~]%-exp ( — &y7) labelled 1s

X (25) = [65/75]% rexp (— or) labelled s

X (2 po) = [65/.%]%7" exp ( —dr)-cosf labelled po

X (2 pm) = [6%2 n]%rexp (— dr)-sin 0 - exp (¢ m D) labelled 7 for m; = + 1
labelled 7z’ for m; = — 1.

The bonding atomic orbital 4 is assumed to be a hybrid of the form:

1

A = (s + Ap)[(1 + 22)%.

There are no non-bonding atomic orbitals D, associated with the hydrogen

atom, and the non-bonding atomic orbitals Oy are orthogonal to A. Neglecting

lack of orthogonality between Slater type 1s and 2s orbitals, the possible O

orbitals are the 1s orbital of X, the orbitals & and &’ and the hybrid orbital ¢
given by:

(14)

1

o= (As — ps)/(1 + A3)% .

The exponent §; for the 1s orbital of X was chosen to be the Slater value,

Z — 0.3, where Z is the nuclear charge. The value of § was assumed to be the same

for 2s, 2ps and 2p, atomic orbitals, and was calculated from spectroscopic data

(Appendix 6). The values of § were found to be approximately equal to those

derived from SLATER’s rules [18]. The exponent of the hydrogen 1s orbital is
calculated from data on the species H+, H and H-.

(15)
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3. Electronie States

We have considered only those states which can be expressed generally as
follows:

152 6% (' )23 (AH)? (16)

where (AH)? signifies two electrons with opposed spin in the bonding molecular
orbital of the form

(ad + bH)/(a? + b2 -+ 2 abS)? (7
x can take the values 0, 1 and 2, specific states being derived from the possible
arrangements of the non-bonding electrons in the ¢, 7 and #’ atomic orbitals as
shown in Tab. 1. States bracketted together differ only in the arrangements of
electron spin in the o, 7 and 7’ atomic orbitals. (Z — 3 — x) is the total number of
electrons in both the 7z and &' orbitals.

For convenience in computation, we calculated initially the energies of mole-
cules with randomised spin (denoted %) for the non-bonding orbitals, e. g. for
two electrons in 7 and #n’ orbitals we calculated the energy of the state involving
7 —?—n’%, and for an electron in a o orbital and two electrons in 7 orbitals we con-
sidered only the state involving a%n%n»}k—. These are not true spin states of the
molecule, but these were readily obtained from the randomised spin states using
the exchange integrals for the ¢, w and ' orbitals, e. g. the 3/T and I states of
BH arise from one electron in a ¢ orbital and one in a % orbital. We calculated
the energy of the state

120 Lat (AH).

The 31 state can be written as:
18 ¢ i‘n ‘T (AH)?

which is lower in energy than the randomised spin state by 3K,,, where K, is
the exchange integral for a ¢ and a 7 orbital, obtained from atomic spectral data
as shown in Appendix 5.

The two states with opposed spin

126t | (AH?and 18?0 | w | (AH)?

are ¥ K, higher in energy than the spin randomised state. The configuration
interaction K, between these two states gives one of the components of the 3[7
state and the /7 state as shown in Fig. 3.

The energy relationships between the 32—, 14, 1.2% and randomised spin states
of BH derived from two electrons in 7 orbitals are shown in Fig. 4.

Using randomised spin means that initially we needed to consider only one molecular
state for given values of Z and z [in 1 s%¢* (mn/)?3= (AH)?] which simplified the program
for the calculations considerably. The randomised states were then split into true spin com-
ponents as exemplified by Figs. 3 and 4.

However, we found that it was impossible, using this simple theory, to calcu-
late the effects of the very important configuration interactions between the two
13+ states of BH, and the two 2[7 states of OH and the two 12+ states of NH,
since in these cases the form of the molecular orbital is not necessarily the same
for the two states concerned i. e. the percentages of 2s and 2p character and the
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degrees of ionic character may be different in the two states. The interaction be-
tween the two states can no longer be represented simply by an atomic exchange
integral.

We should also have included contributions to the specified states from. struc-
tures having a single electron in the molecular orbital 4H or even no electrons in

—_— , g
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Y 3” \I\ \\‘ 3‘2- ‘|‘
| W = \
of at ztat
Fig. 3 Fig. 4

Fig. 3. Configuration interaction for /I and I states of BH
Fig. 4. Configuration interaction for 32—, 14 and X+ states of BH

AH, and considered the possibility of the two bonding electrons oceupying different
molecular orbitals.
The consequences of omitting interactions of this type are discussed later.

4. Energy Equation for Diatomic Hydrides
The energy equation for the diatomic hydrides was obtained from equation (4)
by substituting atomic orbital H for the general atomic orbital B, by replacing
Zy by Zg (equal to 1), by putting m = 0 (no D,, orbitals), and by treating the 1s
orbital of X, the ¢, w and 7’ orbitals as C} orbitals. The 1s and o orbitals required
orthogonality corrections [equations (6) and (7)].
The energies (in eV) were computed for p4 = 0, 0.5 and 1, for 2%/(1 + 2?)
equal to 0.0 to 1.0 in steps of 0.2 and for the internuclear separation R equal to
1.0 to 5.0 a. u. in steps of 0.25 a. u. using the Atlas computer.

@) g4=0
If p4 = 0 we have the ion X+ with electronic structure 1s% 6% (wn’)4-3-% and
the ion H~ 1s% The energy of this state of X+ relative to the ground state of atom
X is equal to the ionisation potential of X plus the excitation (valence state)
energy required to produce the above state of X+ from the ground state of X+,
The energy of H— relative to the hydrogen atom is equal to the increase in energy
when H~— is formed from the hydrogen atom (i. e. — 0.75 eV [4]).

The ionisation potential of atom X was taken from Moore’s compilation [10], and the
valence state energies of X+ were expressed in terms of SLATER-CoNDON parameters [3], then
as a mixture of spectroscopic states using the procedure of MoFFrTT [9]. Atomic energy levels
were taken from Moorgr, the energies of any unobserved terms being obtained by linear
extrapolation of the energy levels of corresponding isoelectronic atoms or ions. (See RoHRLICH
[15].) Details are given in Appendix 5.
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The energy of interaction between X+ and H~ was calculated from the appropriate nuclear
attraction, coulomb repulsion and exchange integrals and from the orthogonality correction
terms for the 1s and o orbitals of X. There is no ‘bonding term’ since for g4 = 0, abS/d = 0.

The two-centre coulomb and exchange integrals for the 1s orbital of hydrogen
and either the 1s, the ¢ or the 7z orbital of X are rather difficult to evaluate. Fortu-
nately, the exchange integrals are fairly small, and it was found that the coulomb
repulsion integrals could be calculated sufficiently accurately by the following
method.

We expressed the nuclear atttaction integral for a 2s orbital and & proton at a

distance R as
s (2s)-e?/R . (18)

Similarly, the attraction of an electron in a {s atomic orbital to a proton at the
same distance B was taken to be
s (1s)-e*/R . (19)

s (2s) and s (1s) tend to unity for large values of R and lie in the range 0.8 to
1.0 for most of the cases treated here. They are readily calculated from equations
given by RoorHAAN [16] for two centre nuclear attraction integrals, and. are
relatively simple functions of the product of the exponent of the orbital and E,
see Appendix 7. We assumed that

| 1s 1s |25 25 | = s (15) s (25).€%/R . (20)

Equation (20} was tested using the tabulated integrals of Korant et al. [7], and it
was found that errors no greater than 0.3 eV were introduced by neglecting the
exchange integrals and using equation (20), for the diatomic hydrides.

Similar approximations were made for the integrals |1s1s|2p, 2p, |,
| 1s 1s | 2p, 2p, | and | 1s 1s | 25 2p, |, and hence the potential energy of attrac-
tion between the ions X+ and H~ was calculated at the specified internuclear
separations solely from the equations of Roothaan for the two-centre nuclear
attraction integrals. The orthogonality terms for p4 = 0 are dealt with in section
(d).

In this case the ‘atoms’ in the molecule are

X [1s2 6% (sun)23-2 A 1] and H (1s 1) .

f— signifies randomised spin, and from the model this involves ‘half an electron’ having
spin o and ‘half an electron’ having spin f, the repulsion between the two half electrons
giving energy terms | A4 | A4 |/4 and | HH | HH |/4. The energies of the bonding states of
the atoms relative to the ground state atoms is therefore given by the valence state energy of
X plus the terms | 44 | A4 |/4 and | HH | HH |/4, calculated as shown in Appendix 5.

The two-centre nuclear attraction and coulomb integrals for interaction between the two
atoms were calculated using the procedure described for g4 = 0.

The leading term of the bonding energy [equation (£ f)] becomes S/2 (1 + 8) for ga =
0.5 = g5 (i.e. @ = b for a bonding molecular orbital). This term and the orthogonality correc-
tion terms are dealt with in section (d).

¢)oa=1
For p4 = 1, we have the ion pair X~ (1s% 0% (nn')2-3-% 42) and H+.

The energies of the two isolated ions will therefore be given by the ionisation potential of
hydrogen, the electron affinity of X (taken from EprLix’s paper [4]), and the valence state
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energy of X—. Spectroscopic data for X~ were obtained by linear extrapolation of the data for
corresponding isoelectronic atoms and positive ions.

The potential energy of attraction of a proton to the ion X~ was obtained directly from
the appropriate nuclear attraction integrals for 1s, o and z orbitals.

The bonding and orthogonality terms are zero for g4 = 1 (i.e. b = 0).

d) Bonding and Orthogonality Terms
For 04 = 0.5
abSjd = 82 (1 + §). (21)

The one-centre integrals in the bonding term were calculated from the energies
of atoms and ions using the Virial Theorem (Appendix 6) and were found to be
equal to

— 13.6 [(Z — 2) (6, — &3) + 5 + 5] 6, — 16.67 (22)

where 6;, 0, and J, are the exponents of the 2s, 2p, and 2p,, orbitals of the species
X-, X and X+ respectively, and 16.67 is the value for the one-centre integrals
involving the hydrogen s orbital.

The two-centre integrals in the bonding term were evaluated in the usual way.

The form of [I]in equation (6) is the same as the corresponding term in braces
in the bonding term (4 f). We therefore used the value given by equation (22) for
a pair of electrons in the ¢ orbital, and half this value for a single electron in the
o orbital.

[I] for the orthogonality term of the 1s? shell involves the potential energy of
attraction of a 1s electron to the nucleus given by:

— 27.2 75y . (23)

The above term is so much greater than all the other terms in [I] that these were
neglected. The whole orthogonality term is very small due to the small value of the
overlap integral of the 1s orbital of X and the hydrogen 1s orbital at the inter-
nuclear separation of interest.

e) Minimisation of Energy
Minimum energy with respect to g4 for given values of 4 and B was obtained
using equations (8), (9) and (10). The corresponding value of g4 (o) was given by
equation (11). Minimum energy, for a given value of R, with respect to g4 and A
was then calculated by plotting the minimum energies with respect to p4 against
A/(1 + 22), (the fraction of 2p, character in atomic orbital 4).

This procedure gave the potential energy curves for the spin randomised states
of the diatomic hydrides. The curves for the true spin states of these molecules
were then derived by applying the appropriate atomic exchange integrals as
shown in Section ITI 3. The results of the calculations are shown in Fig. 5.

5. Results for Diatomic Hydrides
In most cases we compare the results obtained with experimentally observed
quantities such as dissociation energy, force constant, dipole moment etc. Where
experimental data is not available we make comparisons with caleculations based
on conventional methods.
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Fig. 5 gives the calculated potential energy curves for the electronic states
considered, the curves being extrapolated by dotted lines to the dissociation
products (Fig. 5 also includes the results of calculations on the corresponding
positively charged molecular ions discussed in section IV). Experimental values of

LiH

o ,fLis(25)+H

2+

_________ —Be"s (BS)+H

~Ne 52p5(15>+H+

~~p=Be sp(°P)+H

—Be s('s)+H ok

=B*s p(3P+H

Bt s?('s)+H

—B sp(D)+H

=B s p(*P)+H

—B s%p(?P)+H

Fig. 5 a—f. Potential energy curves for diatomic hydrides (energy scale in eV, internuclear separation in a. u.)

potential energy minima [5] are marked on the energy axes. Where experimental
data are not available, the results of HurLEY's calculations [6] are inserted in
brackets. The experimental value of 7., which does not change significantly from
state to state or from the neutral to the positively charged molecule, is shown by

the line on the R axis.
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Tab. 1 gives the force constants obtained from the parabola of best fit to the
potential energy curves ([experimental values in brackets are taken from Hrgrz-
BERG), the fraction of 2p, character in orbital 4 (i. e. A2/(1 -+ A2)] and the charge
density 204 in orbital 4. Dipole moments were calculated by assuming charges
204 and 2pp in orbitals 4 and H respectively. This assumption involves Mulliken
type approximations for the atomic dipole terms arising from the conventional

+ 4
CH/CH NH/NH
N ENSTER
SCT B -y + AT sp D)+
Cop (D) <L NP SR H
—C s*p2(3p)+H* =N s2p7(“S)+H
L. rtelp (2
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1+=C sp?(P)+H
~—C sp®(3D)+H
=C sp®(°5)+H
i NP +H
L <2421
CSP (s)+H '—-NSZIDE(ZD)'FH
—C s%p('D)+H
_Cssz(SP)+H LN 52/73(4S)+H
$ 8
¢ d
Fig. 5

molecular orbital approach to dipole moments. The centroids of the 1s, 7z and 7'
orbitals of X on the bond axis are at the nucleus of X, so that for the dipole moment
caleulations we can take an effective positive charge of (x + 1) at the nucleus, a
negative charge z at the centroid of the ¢’ orbital and a negative charge 20 4 at the
centroid of orbital 4 as shown in Fig. 6. Negative charges are denoted by forces
pointing downwards and nett positive charges by forces pointing upwards.

The distance of the centroid of orbital 4 from the nucleus is given by the
formula:

g=[(s+ Ap,)? r cos 0 dz/(1 - 22) . (24)
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Substituting Slater type orbitals in equation (24) gives

z=2.887 AJ(1 + 4% 6 (25)
+
» OH/OH
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Fig. 6. Effective charges in hydrides

z for the ¢ orbital is equal in magnitude but opposite in sign to that for orbital 4.
The calculated dipole moments are compared with those calculated by Raxsiu
[14] except for the value for FH which is experimental.

The values of the force constants could only be determined to an accuracy of
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¢ 0.3 x 1075 dynes/cm, but the results are of the correct order of magnitude. The
dipole moments are in the same direction as Ransil’s values (or the experimental
value) and, considering their sensitivity to variation in g4 the agreement is quite
good.

Note that states bracketted together in Tab. 1 differ only in the arrangements
of electron spin in the ¢, 7 and =’ orbitals. The method of caleulation outlined in
section III 3 relates the differences in the energies of these states solely to the
exchange integrals for the various pairs of atomic orbitals. This procedure auto-
matically means that these states have minimum energies for the same values of
04, A3(1 4+ 22) and R. The experimental value of k. is the average over the states
concerned.

6. Dissociation Produets and Configuration Interaction

The dissociation products are taken to be the ground state of the hydrogen
atom, and the spectral state of lowest energy which occurs in the valence state
expression for the atom X in the molecule. There are 3 types of valence state
which are considered, namely, 1s? g% (mn')%-3-% A % with z = 0, 1 and 2.

x=10

If A is a pure 2s orbital, the valence state is represented by a mixture of terms
derived from the configuration 1s%2s 2pZ—3, and, if 4 is a pure 2p orbital the
valence state is represented by a mixture of terms derived from the configuration
1s2 2pZ—2. If A4 is a hybrid, we have a mixture of the two sets of terms. As the
internuclear separation increases, the fraction of 2s character of orbital 4 will
tend to one, to give a dissociation product which is the lowest 1s% 2s 2p%-3 term
present in the valence state equation. The dissociation products are in agreement
with those predicted by the Wigner-Witmer rules (see HErRZBERG p. 315 [5])
provided account is taken of the exchange integrals K, or K,, which may be
required to obtain the valence state equations for the true spin states.

xr ==
In this case, the fraction of 2s character in orbital A will decrease as R increases
to give a dissociation product of the form 1s% 2s2 2p2—4,

z=1

The only spectral states present in the valence state have the form 1s? 2s 2p2-3,
and this would be expected to be the form of the dissociation product, whereas,
in fact, the dissociation product is of the form 1s2 252 2p2—4.

For example, Fig. 5 shows the BeH 22 state dissociating to Be 1s2 2s 2p (3P),
whereas the true product is Be 1s% 252 (1S). However, we have not taken into
account, in this simple treatment of the effects of configuration interaction with,
in this case, the 22% state of the form 1s%c? (AH)" (i. e. having a one electron
bond). The latter state is capable of dissociating .to the product Be 1s2 2s2 (18).
As the internuclear separation increases, the percentage of the latter form in the
ground state wave function would increase and simultaneously the percentage 2s
character in the ¢ orbital would increase to give Be 1s2 252 (15) and H 1s (2S). The
same considerations would apply to all the molecular states having a single elec-
tron in the ¢ orbital.
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The possibility of configuration interaction between the ¢* and aw’ 2% func-
tions of BH is particularly important since it would decrease the calculated energy
of the 1.2+ ground state. The same applies to the ¢% 7w and 72 ' 211 functions of CH,
and to the o2z’ and #2 72 127+ functions of NH. The above three pairs of states
also involve some of the larger differences between calculation and experiment,
but unfortunately the consideration of this type of interaction was beyond the
scope of the present programme.

There is also the difficulty presented by the terms 7|44 |44 and
% | HH | HH | which according to this simple theory would be retained in the
energy of the atoms even for R = co. This could be resolved by allowing interac-
tion with the function, involving two different molecular orbitals for the two
bonding electrons, which would become more predominant as R increased, and
would eventually achieve the situation where one molecular orbital has g4 = 1
i. e. is involved solely with the atomic orbital 4, and the other has p4 = 0 i. e. is
associated solely with atomic orbital A 1s. This situation would not involve the
repulsion between ‘half electrons’ present in the unrefined theory.

We also did not allow for the possibility of orbital contraction during bonding
which RUEDENBERG [I7] claims to be one of the important factors in bonding.
We have infroduced the Virial Theorem to calculate the energies of the isolated
atoms (Appendix 6), and could have extended the approach further by allowing
the kinetic energies of the electrons to increase as the potential energy decreases
during bonding. This would automatically involve orbital contraction (i.e. an
increase in the exponent of the Slater type orbitals) and the Virial Theorem could
have been imposed on the molecular calculations, just as it was imposed on the
atomic caleulations. However, the computational effort involved in this procedure
would have been very considerable and orbital contraction was neglected.

IV. Singly Charged Molecular Tons

We have also calculated the potential energy curves of the singly charged

molecular ions B;LH to NgH, the procedure used being exactly the same as that for
the neutral molecules.

The three values of g4 in this case correspond to the ion (atom) pairs X%+and
H-(04=0) Xt and H (p4 = 0.5) X and H* (o4 = 1.0). The molecular ion XH can
be represented by the formula

1% 0% (mn')2—4-% (AH)?
and is isoelectronic with the neutral diatomic hydride derived from. the element
preceding it in the Periodic table.

The energy of the ion X** in the molecule was calculated from the second ionisation
potential of X and from the atomic spectral data of X2+ taken from Moore [10]. The valence
state energies and the derivation of the exponents of the orbitals of the species X*+, X+ and
X are given in Appendices 5 and 6. The two centre coulombic and bonding terms were calcu-
lated as previously described, the energies of the molecular ions were minimised with respect
to g4 and 22/(1 + A%) and the resulting potential energy curves are shown in Fig. 5. The few
experimental data are marked on the energy scale, the 7. values for the molecular ions being
approximately the same as those for the corresponding parent molecules.

On the whole, the agreement with experiment is about the same as that for
the parent molecules, and the same remarks concerning the effects of configura-
tion interaction apply.

Theoret. chim. Acta (Berl.). Vol. 8 24
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The dissociation products are in a few cases the ion X+ and the hydrogen atom,
but in most cases they are atom X and the ion H+. In the latter case the atom X
has a valence state of the form

1s® 0% (nn')2-4—% A%
and all the molecular states are capable of dissociating to an atom having elec-
tronic structure
152 22 2pZ—4 |

The introduction of configuration interaction with the function corresponding
to a single electron in the bonding orbital is therefore not necessary to explain the
dissociation products of those states having a single ¢ electron.

Similarly, the energy terms § | A4 | A4 |and 3 | HH | HH |will not be present
when the dissociation products are X and Ht, but configuration interaction of the
type considered for the neutral molecules should have been included to produce
more suitable functions.

An interesting point about the potential energy curves of the positive molecular
ions is that many of them show pronounced humps, whereas this did not occur in
the curves for the neutral molecules. Presumably this arises because at fairly
large values of R (say 3 to 4 a. u.) the energy required to transfer electrons from
the atom X to the proton to form a bond is greater than the stabilisation due to
bonding. Alternatively, if no charge transfer takes place there will be a coulombic
repulsion between the neutral atom and the proton. For the formation of a neutral
molecule from atoms no nef charge transfer from one atom to the other is required
to produce bonding.

The values of p4 and A%/(1 +- A?) corresponding to minimum energy are given
in Tab. 1.

V. Comparison with Mulliken and Pauling Eleetronegativity Scales

The deviation of the bond from pure covalent character can be represented by

the variable 4 where:
A=204—1. (26)

A is equal to the excess negative ¢harge in the atomic orbital A4 (i. c. in excess of
one which corresponds to pure covalent character) and equal to the deficiency of
negative charge in atomic orbital B. A can take any value in the range — 1 to
+ 1, the extremes correspouding to the ion pairs X+ Y~ and X~ Y+ respectively.
The product of A and 7, will be approximately equal to the dipole moment for a
neutral diatomic molecule.

From equations (11) and (9)

A = — (¢ + y)fco = (By — E,)[2 (Hy — 2 By 5 + Ey) . (27)

1. Neutral molecule XY

By, By 5 and E, correspond to the energies of the pairs X+ Y-, XY and X— ¥+
respectively. Taking energies relative to the valence states of the atoms X and ¥
and neglecting orthogonality correction terms

E, ~IP(A)— EA (B)— ¢}R (28)
Hos~%|AA|AA|+%|BB|BB|—%eR+ 1182 (L +8) (29)
E, ~IP(B)— EA (4)— ¢}R. (30)
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The approximation signs of equations (28), (29) and (30) arise from the assump-
tion that the two centre coulombic terms are equal to %/ R. The form of equation
(29) is derived from equation (4) by substituting g4 = o = 0.5 by equating the
two centre integrals to €*/ B and by equating sections (4a) and (4b) to the energy
of the valence states of X and Y. [I] represents all the integrals in the braces in
section (4f),and IP and KA are the valence state ionisation potential and electron
affinity respectively.

Using the Pariser approximation [equation (13)] and equation (27)

A={[IP (A)+ EA (4)] — [IP (B) + BA (B)}j{| AA| A4 |+ | BB| BB|
— 2R —4[I]8)2 (1 + 9)] (31)

A= (ga—yp)3{| 44| 44|+ |BB|BB|-2&R—-4[1]182(1+8) (32

where x4 and yp are the Mulliken electronegativities of the two orbitals involved
in bonding. We found that for the diatomic hydrides the last two terms in the
denominator of equation (32) tend to be approximately equal to each other but
opposite in sign whence A is approximately independent of R and given by:

A= (ga—yp) 3 (| AA|AA |+ | BB|BB|). (33)

If the repulsion between two electrons in a given orbital is approximately
independent of the type of orbital concerned then the deviation from pure covalent
character in a bond will be approximately proportional to the difference in the
electronegativities of the two orbitals concerned in bonding. Certainly the values
of | A4 | A4 |and | BB | BB | do not change as rapidly from atom to atom as the
electronegativity, but we can not in general relate the deviation from pure covalent
character solely to the difference in Mulliken electronegativities of the orbitals
concerned.

We compared the values of A derived from equation (33) with those calculated
from the values of o4 given in Tab. 1, and, in general, the agreement between the
two values was rather poor, presumably because the assumptions used to derive
equation (33) are too drastic. Namely, that the two-centre integrals are not all
equal to ¢*/ R, and probably the most drastic approximation is the neglect of the
orthogonality correction terms.

The ionic-covalent resonance energy of the molecule XY is £* — E, which
from equations (9) to (15) and (33), is given by:

B* — Byy=— (ya—yofl(| AA| A4 |+ | BB| BB)).  (34)
Equation (34) corresponds to the Pauling concept of electronegativity apart from
the presence of the variables | A4 |44 | and | BB | BB|. The reliability of
equation (34) is subject to the same reservations as equation (33).

2. Positive Moleeular Ion XY+
If XY+ is derived from the species X+ and Y then, whengy = 0,0.5 and 1, we
have the pairs X2+ and Y-, X+ and Y and X and Y+ respectively whence from
equation (4)

E, ~IP(X+)— EA(B)—2¢}R (35)
Bos=1|AA|AA |+ 1 |HH|HH|— % R+ [I]182 (1 + 8) (36)
B, ~IP(B)~— EA (X*) (37)

24*
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where IP (X*) and EA (X+) are the valence state ionisation potential and elec-
tron affinity of orbital 4 in the ion X+.
Using the approximations given in section IV 1

A~ (yx+ —yp— € R)|(|AA|AA |+ | BB | BB). (38)

The electronegativity of orbital A in the ion X+ will be appreciably greater
than the electronegativity in the afom X but the effect of this is moderated in
equation (38) by the presence of the term ¢?/R. For this reason it is not surprising
that the values of g4 for the neutral molecules X H and for the molecular ions X1
in Tab. 1 are of a similar size. In other words, for values of E approximately
equal to 7, the greater desire of X+ for electrons compared with atom X is com-
pensated by the very strong coulombic stabilisation when electrons drift towards
Y to produce, in the limit, the ion pair X+ Y-,

The authors wish to express their graditude to friends and colleagues at the Universities

of Leeds, Manchester and Sussex for many helpful discussions. H. D. B. J. expresses apprecia-
tion to D. 8. I. R. for their financial support.

V1. Appendices
Appendizx 1. Integrals from M. O. Theory

The wave function for the diatomic molecule XY is given by a determinental function of
the form:

W — det [(ad + bB)1)s; (ad +bB)(2)s, Cy(3)ss..Ck (i) si .. D (N)sxljd . YNT.  (39)

In some cases a combination of determinantal functions must be used e.g. if we have two
non-bonding electrons with opposed spin in two different orbitals say p and ¢, then we must
take the two possible combinations of determinantal functions involving electrons in pe and
gp or pf and go where « and f signify spins + 1 and — &. This only has the effect of intro-
ducing an extra exchange integral between orbitals p and g. We therefore consider the eigen-
value derived from equation (39), and, if necessary, modify it for configuration interaction of
the above type.

The energy corresponding to equation (39) can be expressed as four sets of integrals as
shown in equation (40).

E=](® +a*b2 D, + a®>b D, + a®b®D,) HD, dv/d? (40a)
+ [ (D, + a2 b2 D, -+ abP By + ab® B,) HD, dr/d? (40b)
[ (@80, + a2b2D, + aPbd, + abd By) HO, drjd? (40c)
+ [ (@80, + a2 b2 D, + aP b, + ab® @,) HO, dv/d? (40d)
where d = a® + 4% + 2 ab8

and
D, = det [A(1)s; A(2)s, C1(3)s5 . . Crld)si .. Du(N)sn]] VN1 (41a)
@, = det [B(1)s; B(2)s, C1(3)sy .. Ci(i)si .. Dn(N)sx]/ YN (41b)
Dy = det [A(1)sy B(2)s, Cy(3)s4 . . Cx(3}ss .. Du(N)sw]/ VN1 (41c)
@, = det [ B(1)s, A(2)s, C,(3)s; - . Culi)si . . D N)sn]] YN (414)

Appendiz 2. Atomic Orbital Approximation
The Hamiltonian H in equation (40) can be written as follows:
H=Hx+Hy +H + H” (42)

where Hx is the operator for electrons in orbitals 4 and Cy only, and Hy the operator for elec-
trons in B and Dy only, i.e. for the isolated atoms or ions of X and Y respectively.

H’ is the operator which gives the interaction between two positive ions X+ and Y+
formed by removal of electrons from the molecular orbital, and H’ is the operator for all
other interactions arising from the bonding between the two atoms X and 7.
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@, and P, are the wave functions for the ion pairs X~ Y+ and X+ Y~ respectively. @, is the
function for the atoms X and Y in which the electron spin is « in atomic orbital 4 and g in
atomic orbital B; and @, is the same function with spin f in atomic orbital 4 and spin « in
atomic orbital B. A linear combination of @, and @, can be said to correspond to randomised
electron spin in orbitals 4 and B.

Since Hx and Hy are the proper Hamiltonians for electrons in orbitals associated with X
and Y respectively, then the energy terms arising from Hy and Hy in equation (40) are:

G E (X)) + A E(YY) (43a)
+ 03 B (X) + 3 B(Y) (43D)
+os08 B (X) + paon B (Y) (43c)
+ 0408 B (X) + paos B (Y) (43d)

where the first two terms are derived from the first integral, the next two terms from the second
integral ete., and

ga = (a® + abS)/(a® + b2 + 2 ab8)

o5 = (b + abS)/(a® + b% + 2abS) =1 — p4. (44)
E(X-), E (YY), B (X*) and F (Y~) are the energies of the separated ions which would be

produced by the two bonding electrons being restricted either to orbital 4 or to orbital B.
E (X) and E (Y) are the energies of the isolated atoms X and Y in appropriate valence states

with electron spin « in atomic orbitals 4 and B. ¥ (X) and F (Y) are the energies for the same
situation except with spin f.
Combination of equations (43c) and (43d) gives the energies of the isolated atoms when
the electrons in orbitals 4 and B have randomised spin.
Pariser has suggested the following approximation for the coulomb integral | 44 | 44 |
[z2] :
|AA ]| AA| = IP (4) — EA (4) (45)

where 1P (4) and EA (4) are the valence state ionisation potential and electron affinity of
the atomic orbital A. Using this approximation we can put

E(X")=E(Xt)+2E(4) + | AA | 44} (46)

[Z(X) + B (X))j2 - E(X*) + B (4) (47)

E (4), which is approximately equal to — I'P (4), is the ‘energy’ of an electron having

randomised spin in orbital 4, and | A4 | A4 | is the potential energy of repulsion. between
two electrons in orbital 4.

Substituting equations (46) and (47), and similar equations for E (Y~), E (Y) and E ()
into the expression 43 gives the following result for the energy terms arising solely from the
operators Hx and Hy

E(Xt) +204E(A) + 04| 44| A4 |
+ E(Y*) + 203 E(B) +¢%| BB| BB]|. (48)

Appendix 3. Approximations to Two-Centre Integrals

The energy terms derived from H’ correspond to the energy of repulsion between the jons
X* and Y+ formed by loss of electrons from the molecular orbital. We denote these terms

Brep (X+ 7). (49)

The integrals derived from H’’ are given in equation (50), where section (50a) is derived
from section (40a), (50b) is derived from (40b) and (50c) from (40c) and (40d).

(@ + a*bS) [ — 2| Zy | AA| + 25 (| AA | Dn Du | — % | ADw | ADw |))/d2
+ (2028 + a¥b)[ ~2|Zy|BA| +22( BA|DnDn| —%| BDn| ADn |))jdz (50a)
4 (b4 +ab® 8)[ -2 |Zx | BB| +22X( BB|C:Cr| — 31 BC: | BC: )2
: 14
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+ (@b S +ab®) [~ 2|Zx | AB| +22X(|AB|CrCx| — % | ACk| BO: |)]/a2 (50b)
+2(a2 0 + a®bS) [ - (Zy(AA[+2?{AA(DmDm[—%IADm]ADm[)}/dZ

+2(a2b 8 + abd) [—]Zy]BA}+§'(]BA]DmDm]—%]BDmlADm[)]/dz

+2(a2b® +ab®8) [ - |Zx| BB +§(|BB|0kok1-%|Bo,c130k])]/dz
+2(a2b2S+a3b)[-—1ZX[AB|+:Z'(|AB|O;CC;C[———é—]AC’k]BC’kl)]/dz

+2a2b2 | AA | BB|jd? + 2a*b% | AB | AB |/d?
+20°b | AA| AB|[d? + 2ab® | BB | AB|/d? (50c)
The above integrals are of the following types (see Roormaaw [16]). Nuclear attraction inte-
gralse.g. | Zx | BB |and | Zx | AB |. Coulomb, exchange and hybrid integrals e.g. | A4 | BB |,
|AB|AB|,| 44| AB|.
Collecting like terms in equation (50) gives equation (51).

202[ — |Zy | AA| + Z(| AA | DuDu| — 3| ADn | ADy )))jd
+2b2[—[ZX[BB[+g‘(|BB|OkO,c|—%]BOk[BOEI)]/d
+2ab[ — |Zy | BA|+ Z(| BA | DnDu| —%| BDn| ADu|)jd
+2ab[ ~ | Zx | AB ]| +;(|AB1O,C0,C[ ~ L | ACy | BC: )/
+2a2b2[AA[BB[/aP:2a262]AB[AB[/d2+2a3b{AA[AB|/d2 +2ab®| BB | AB|jd

(51)

Some of the integrals in equation (51) (particularly the hybrid exchange infegrals) are
difficult to evaluate and MurLikexN [11] suggested the following type of approximation to
simplify their calculation

| XX | YZ| = Svz (| XX | YY | + | XX | ZZ )2 (52)

where Syz is the overlap integral for two orbitals ¥ and Z.
We make the following similar approximations

|Zy | BA |~ S (|Zv | A4 | + |Zy | BB))/2

| Zx | AB|=8(|Zx | BB| + |Zx | AA})/2

| BA|DuDn | =8 (| A4 | D D | + | BB | Dw D )[2

| AB|CyCe| =S (| BB CsCs| +| 44 | Ce Ci )2

| BDw | ADp |~ 8 (| ADn | ADw | + | BDn | BDn |)/2 (53)
| ACx | BCy |~ 8 (BCyx | BCx | + | ACk | ACk |)/2
|AB|AB|~=8*(|A4A | AA | + | BB| BB|)/2
|AA|AB|=~8(|AA| 44|+ ]| A4 | BB))/2
|BB|BA|=8(|BB|BB|+|BB|44])2.

The above approximations were tested for integrals involving Slater type 1s atomic
orbitals and Slater type 2s, 2p_ and 2p_atomic orbitals using the tables of KoTant et al. [7].
Errors of less than 29, were found for the integrals involving 1s orbitals with 2s and 2p,
orbitals. Larger errors (up to 10%,) were found for integrals involving the 2p_ orbital. How-

ever, for interatomic distances of 2 to 4 a.u., the above approximations usually give errors of
less than 0.5 eV.

We substituted equations (53) into the expression (51) and obtained the expression (54),
for the integrals derived from that part of the Hamiltonian labelled H”
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+20s[ ~|%x|BB|+Z( BB|C:Ci| - %] BCx| BC:))]
&
+ 20405 | 44| BB|
abs
+7[—|ZX|AA|+f(]AA;Okok[—%]A0k1A0k[)
~ |2y |BB|+Z(| BB|DnDn|~3%|BDn|BDx)) (54)

+0a| A4 | AA| + 0z | BB| BB|
+|Zy| A4 |- Z(|AA | Dn Dy | ~ 1| ADw | ADw |)

+IZXIBB|—2([BBIOI¢OE!—%|BOICIBOIC|)
k
~ |44 | BB]|].

Equations (48), (49) and (54) give the total energy of the molecule [equation (4) of the main
text].

Appendiz 4. Orthogonality Correction,

To make any atomic orbital Cr orthogonal to the bonding molecular orbital it is necessary
to convert Oy into a molecular orbital of the form (a’ C% + b B) such that:

f (@ O+ ¥ B)(ad +bB)dr =0 (55)
or
a’ b8 +ab’ 8 + b6 =0
or

Vjo’ = — b8/(b + af) (56)
where §” is the overlap integral for the orbitals B and Cy. If §” is zero no correction is required
since, in this case, O is orthogonal to the molecular orbital.

The proposed ‘model for bonding’ of the general text indicates that if we have two electrons
in the given C orbital then the molecular orbital (o’ C; + b’ B) is equivalent to charge densi-
ties 2 (a2 + o’ b’ §')/d" and 2 (b2 + &’ b’ 8)/d’ in orbitals Cx and B, respectively, where d’ =
a?+b2+2ab 8.

There will be a corresponding bonding term of the form

o b 8 [N . (87)

However, if §” is reasonably small (i.e. less than 0.3) then the ‘density’ in Oy tends to two,
and that in B resulting from the correction tends to zero, to within 29, for all values of @, b
and 8. We can therefore regard the molecule as having 2 electrons in Cr, the only significant
contribution to the energy of the molecule arising from lack of orthogonality being that given
by the expression (57).

Appendiz 5. Valence State Energies

We required the energies of the following atoms or ions, in the molecule X H, relative to
ground state atoms.

Xt 1s%7% (an')2 3= H—1s?
X 18%0% (an)2 % =4 _1,‘_ H1s _1!l
X~ 15%% ()2 37242 H+

where 4 signifies ‘randomised spin’, which introduces the energy terms | A4 | 44 |/4 and
| HH | HH |/4 associated with the repulsion between two ‘half electrons’ in orbitals 4 and H

respectively. +
For the molecule XH we required the energies of the following species
X2+ 18267 (an)2— 4= H—1s%
X+t 1s%% (nn')2 44 % H1s %

X 18%07 ()24 =432 H+.
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The energies of the species derived from atom X were calculated initially relative to the
ground state of the jon X+.
Tonisation potentials were taken from MoorE [70] and electron affinities from Eprfn [4].

The valence state energies of the spin randomised states (section ITI 3) were calculated in
terms of Slater-Condon parameters [3] as shown in Tab. 2.

Table 2. Valence State Energies in Terms of Slater-Condon Parameters
z2=0
Xt (or X2) 1%y p¥ — y (y — 1) Fyper
X(or X 1A L clspy — y @of2 —y (y — 1) Fyw + (1 = o) prtt = (29% + 5y) Fypvj2) +
+]144 |44 |/4
X (or X) 1s%md? c[stpr — yGyw — y (y — 1) Fr] + (1 — o) [pv32 — (1 + 6y — 4) Fyo] +
+e[d (Gypr — Forr) — Agr)

=1

X+ (or X?) 1%yt c[pv — 2y% +y —3) Fyrr/2] + (1 — ¢) [sp?~ ! — (y — 1) Gyopj2 —

— (* — 3y + 2) Fyrr]

X (or Xt) 1s%0mv24 li Sp¥ — yGpf2 — (242 + y — 3) Fprp/2 — e[ 2(Gysp — Fypr) — App)2] +
+ | AA] A4 |4

X~ (or X) 1s2omv=24% ¢ [s%py — G2 — (2942 +y — 3) Forp/2} + (1 — ¢) [spv*?! —

—(y + 1)0r2)2 — (4 + 4y — 9) Fyrr]

z =2

Xt{or X*) 16%%mv 2 cp? — (52 + 24 —12) Fyrr] + (1 — ¢) [2pv 2 — (y — 2) Gyop — (32 —
5y + 6) Py] + e [4 (Gyr — Fyw) — Ay

X (or X+) 15%%0 24 L ¢ [spr—yGynf2 — (5 + 2y — 12) Fyor] + (1~ o) [spr—ie(y—1) Gyev
— 2y -3y - 2)Fprr2] + | AA| 44 |4

X (or X) 1s%%mv—242 v — yGpsr — (y? + 2y — 12) Fyor

y = Z — 3 — x for the molecules XX
y = Z — 4 — « for the molecular ions XH.

n¥ ete. signifies the total number of electrons in both the 7z and 7’ orbitals.
e=1/1 + A% e =231 + A?)?
Spr =2 I +ylp + Foss + 2yFpr + y (y — 1) Fyez/2
sp¥ = Iy + yln + yFe? +y (y — 1) Fpr/2
=yl +y(y — 1) Fore)2
dgp = Fygss — 2 Fer + Foer

s and p denote 2s and 2p atomic orbitals.

The Slater-Condon parameters can be calculated from the atomic energy levels of the
atoms and ions involved, but this procedure does not always give consistent values for Gys»
and Fyr» i.e. the value of Fyr?, say, calculated from one pair of states differs from the value
obtained from another pair. For this reason we transformed the valence state expressions of
Tab. 2 into mixtures of spectroscopic terms, and evaluated the valence state energies by
inserting the values of the appropriate atomic energy levels. This is the procedure developed
by MorrrTT [9], and may be illustrated for the case of the BH molecule.

For # = 0; the randomised spin state of BH is
ts? w1 (A2
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For g4 = 0, 0.5 and 1 the valence state energies of the B, B and B~ species are respectively:
1
Bt [325° GP) + 1320 (D) + % 29 ()]

1
B o[} 2529 (*P) + 13 2520 (D) + § 2s2p* (38) +  2s2p* (*P)]
+ (1= o) [22p°(58) + L 2p° 2D) + L 2p° (BP)] + | A4 | AA |J4

1
B~ ¢[22s2p2 (3P) + % 2s22p? (1D) + % 2s22p% (18)] +
1
+ (1~ o) [§2p* CP) + 15 20" (D) + %20 (U8)] + e [4 (Gyr — Foyro) — Ag2].

The terms in square brackets are the same as those given by MorrrrT for valence states
derived for pure atomic orbitals. Combination of the two sets of states corresponds to the use
of a hybrid orbital in the bonding molecular orbital. The extra term e [4 (G52 — F,pp) — Apr]
arises from the repulsion of two electrons in a hybrid orbital in the B~ ion.

If Slater-Condon parameters for the spectral states are introduced into the above equa-
tion, the first three expressions of Tab. 2 are obtained with y = 2.

The randomised spin state can be converted into true spin states of the molecule BH as
shown in Fig. 4 of section IIT 3. These are the 3X~ the 14 and the X states, produced by
introducing the exchange integral K. which changes the ‘weights’ of the spectral terms in
the valence state e.g. the spectral state of B+ required for the 3%~ is only the 2P term, that
required for the 4 is only the 1D term, and for the 1+ state the valence state of BT is
[Z (18) + % (1D)]. Similar considerations apply to the application of K to the B atom and
the B~ ion.

The spin randomised case for x = 1 is

1s%0 % 7 TT (4H)?

and this gives rise to the 317 and I states for BH by the use of the exchange integral Koz
(or Kon). The appropriate valence state energies are given by:
Bt c[22p2(3P) + 2 72p% (AD)] + (1 — o) [3 252p (BP) + % 2s2p (*P)]
B [} 2s2p% (4P) + 1 2s2p2 (2D) + L 2s2p% (2P)] — ¢ [2 (Gy>2 — Fypo) — A22[2] + |AA| AA |J4
B c[£2s2p2 CP) + 1 2s22p2D)] + (1 — o) [§ 2s2p° (3D) + § 252p® (*P) +
+ 1 2s29% (1D) + 1 252p% (1P)] .

Application of Kon results in only the 3P term of B* being associated with the 31T state
and only the 1D and 1P terms of Bt being associated with the 17 state. Similar effects occur
for the B atom and the B~ ion.

The extra terms involving (G457 — Fyrr), Aye and | A4 | A4 |/4 were calculated from the
monocentric integrals of RoOTHAAN [16].

Gyr = 218425 eV (57)
Fyrr = 019125 eV (58)
Ag? =0
where 0 is the Slater orbital exponent of the 2s and 2p orbitals.
|HH | HH | = 17.00 01 eV (59)
where 8y is the orbital exponent for the hydrogen 1s orbital.
| AA | AA | = (Fy» + 212 Fp + A Fior + 4 22 Gysp + 422 Fyro) (1 + A%)? (60)
where
Fys = Fgr = Foov = 9.8818 5 6V . (61)
Exchange integrals
Kon = Gyo 2(1 + 72) + 3 Fyrp(1 + %) (62)

K = 6 Fyor (63)
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and they were calculated from differences in the atomic energy levels used in the valence
state expressions.

Atomic energy levels for atoms and positive ions were taken from Moore [10], and for the
negative ions they were obtained by linear extrapolation of the energy levels of the corres-
ponding isoelectronic atoms or ions (see RomrLICH [15]).

Appendiz 6. Application of the Virial Theorem

The orbital exponent § of the atom X was found from the energy of the atom, in its appro-
priate valence state, relative to the positive ion X@~2* 142,

Let I be the sum of the ionisation potentials required to produce X2z—2*1s? from the
ground state of atom X, and V the valence state of energy of X expressed as a mixture of
spectroscopic terms, ignoring for the moment the terms involving (G2 — F,pr) and | A4|44 |/4.
If ¢ is the exponent of the 2s and 2p orbitals then the kinetic energy of the electrons in these
orbitals will be 13.6 (Z — 2) 6’2 and by the Virial Theorem

13.6(Z —2)62=1- V. (64)

The potential energy required to remove these electrons will be 27.2 (Z — 2) §"2.

The extra potential energy terms involving (Gys»— F,rp) and | A4|44 |/4 will cause &
to change to d, the exponent of the Slater type orbitals of the atom in the molecule.

If we regard the energy of the 1s? as dependent only on the nuclear charge i.e. independent
of the number of 2s and 2p electrons, the potential energy terms involving 2s and 2p orbitals
can be shown to be proportional to d [see equations (57) to (61) for example], so that the change
from §" to & will cause the first potential energy term to change to 27.2 (Z — 2) ¢’ d. If we
express the extra potential energy terms as K 6, then the new total potential energy will, by
the Virial Theorem, be given by:

212(Z - 2)8* =212(Z -2)66— K9. (65)
From equation (64)
6=1[(I-V)N3.6(Z ~ 2)]% - K[27.2(Z — 2) (66)
and the energy of the atom in the molecule relative to the ground state atom is
I -136(Z - 2)¢%. (67)

The values of § caleulated from equation (66) are in fairly good agreement with those calcu-
lated from Slater screening constants except for some of the valence states of Li and Be.
However, in contrast with Slater’s values, we allow § to vary with the percentage 2s and 2p
character in the atom.

The values of § and the energies for the ions X~ and X+ and for the species X2, X+ and X,

appropriate for the molecule ng , were calculated in a similar way (see Tab. 3).

We also allow the exponent of the hydrogen 1s atomic orbital 8u, to vary with g4. No
value of dx is of course required for H+. For the hydrogen atom in the molecule, the potential
energy of attraction to the nucleus is 27.2 0, and the term | HH | HH |[4 is 4.25 64 [equation
(59)]. From the Virial Theorem, the potential energy must be 27.2 642 whence

27.204% = 27285 — 4.250n
i.e. on = 0.8437 (68)
and the energy of the hydrogen atom in the molecule relative to the ground state atom is
13.6 — 13.6 0n? = 3.92eV . (69)
If g4 = 0, then we have the ion H~ in the molecule. The energy of the two electrons is:
2 x 13.6 0x® = 13.60 + 0.75
ie. du = 0.7263 . (70)

The monocentric integrals of equation (4f) were expressed in terms of atomic energies via
the Virial Theorem. The Cy atomic orbitals consist of the 1s orbital of X and the ¢, # and =’
orbitals. The potential energy of attraction of one electron in 4 to the nucleus of X (| Zx | A4 |}
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Table 3 (continuation)
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(')

o (')t
o2

(ren’)®

o ()2

o2 (nn')?
(ore)t

o (n')?

o? (mr')?
o (nr')*

o? (nn')?

o2 (')t

0.000

1.532
1.670
1.862
1.958
2.032

2191

2.274
2.337

2.520
2.594
2.654
2.973

2.973

3.296

0.000

1.532
1.643
1.862
1.941

1.973
2191

2.259
2.293

2.520
2.581

2.618

2.942
2.942
3.268

0.000

1.532
1.616

1.862
1.923
1.925
2.191

2.245
2.256

2.520
2.569
2.587

2.915

2.915

3.244

0.000

1.532
1.589
1.862
1.905
1.888
249

2.231

2.227

2.520
2.557

2.562

2.892

2.892
3.223

0.000

1.532
1.561

1.862
1.887
1.862
2.191

2.216

2.205

2.520
2.544
2.542
2.874
2.874
3.207

0.000

1.532
1.532
1.862
1.869
1.847
2191

2.201

2191
2.520
2.532
2.528
2.861

2.861

3.194

Be
B
B
C
C
C

0.000
1.024
1.157
1.358
1.452
1.523
1.693
1.770
1.831

2.021

2.092

2.150
2.418

2.471

2.796

0.000

1.024
1132
1.358
1.435
1.466
1.693
1.757
1.788
2.021

2.080

2.115

2.407

2.441

2.768

0.000

1.024
1.106
1.358
1.418

1.420
1.693
1.743
1.754
2.021

2.068

2.085

2.397
2.415

2.745

0.000

1.024
1.079

1.358
1.401

1.385
1.693
1.729
1.726
2.021

2.056

2.060

2.386
2.394
2,725

0.000
1.024
1.052
1.358
1.383
1.361

1.693
1.715
1.706
2.021

2.044
2.042
2.375
2.377

2.708

0.000

1.024
1.024
1.358
1.365
1.347
1.693
1.701

1.693
2.021

2.032

2.028

2.364
2.364
2.696

Liv

Be™

Be*

B+

B+

B+

01'-

C+

C+

N+

N+

N+

O+

o+

F+
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is a linear function of § and so are the cou-
lomb and exchange integrals between 4 and
the ¢ or  or 7’ orbitals. If we regard the 15
shell as just screening the nucleus then the
coulomb and exchange integral involving 4
and the 1s orbitals will also be directly pro-
portional to the exponent of orbital 4.

We therefore put
K= |Zz| 44| +2 (44| CeCx]| -
&
— L AC | ACk]). (71)
Similarly from equations (60) and (61)
K,6=]44|44]. (72)

All other coulomb and exchange integrals
involving o, 7 and 7" orbitals will also be pro-
portional to §, and we set these potential
energy terms equal to K, 6.

The differences in the potential energies
of the ions X~ and X% and the ions X+
and X@ 2+ are respectively:

—27.2(Z — 1)6,2
=2K,6, + K;0; + Kg6;, ; (73)
- 272(Z - 3)6;2 = K36, (74)
where §;, and §, are the exponents of the 2s
and 2p orbitals in the ions X~ and X+ respec-
tively.
The potential energy term required is:
K8, + 3 K, 6 (75)
where §, is the exponent of the orbitals in
the neutral atom X and from equations (73)
and (74).
K 8, + $ K, 8, = — 13.60 [(Z — 2) (6; —6)
+ 0y + 0519 . (76)
The monocentric integrals involving B
and Dy, reduce to:
~|Zx|HH| + 1 |HH | HH | =
— 19.76 6 eV
for the diatomic hydrides, where du is the ex-
ponent of the hydrogen 1s orbital in the mo-
lecule (for g4 = 0.50n = 0.8437).

The bonding term in the molecular ion
XH was calculated in a similar way.

(77)

Appendiz 7. Two-Centre Integrals [16]
a) Nuclear Attraction Integrals

The nuclear attraction integral for an elec-
tron in a given orbital to a proton at a distance
R from the centroid of the orbital was given
by:

5.8/ R (78)
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where
s(18) =1 ~[1 +J Rlexp( ~ 26R) (79)
s(2s) =1 —[1 +38R/2 + (OR)? + (OR)?*/3] exp ( — 20R) (80)
§(2ps) =1 + 3J(0R)? — [T + 118R/2 + 3 (OR)? + (JR)®

+ 3/(OR)? + 6/(0R)] exp ( — 26R) (81)
8 (2pa) =1 — 3/2(6R)? + [2 + 3/2(6R)? + 3/6R + 0R/2]exp ( — 20R) (82)

5 (252p5) = 5/(3.46420R) [1 — (1 + 28R + 2 (SR)? + 1.2 (OR)® + 0.4 (SR)* ] exp ( — 25R) (83)

8 is the orbital exponent, B the internuclear separation. For the hybrid atomic orbitals A
and ¢

s(4) = ! s{(2s) + # 8(2p0) + —4“2 4 s (28 2ps) (84)
1+ A2 1+ 42 Po 1+ 22 Po
1 L

8(2p0) + L 8 (2s) — $ (25 2p0) (85)

S(U):1r:~}f“’ 1+ 42 1+ 22

b) Overlap Integrals

These integrals were taken direct from RooTHAAN's paper [16].
The overlap integral between the orbitals 4 and H is given by:

1 _ A
8 = WS1528 + m Ss2pg (86)
and that between ¢ and H is given by
1 A
8 = ———= Ss2py, — === 125
A (Y D

where Sies and Sisep, are the overlap integrals for the hydrogen 1s orbital and the 2s and 2ps
orbitals respectively of X.
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